Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Man left Africa three times

07.03.2002


Early humans came out of Africa again and again.

There were at least three major waves of early human migration out of Africa, our DNA suggests. Apparently the wanderers made love, not war: gene patterns hint that later emigrants bred with residents.

Human origins are contentious. Most researchers agree that there have been several major migrations out of Africa. Some hold that human populations in many regions evolved in parallel after Homo erectus left Africa around two million years ago. Others think that a wave of modern humans from Africa replaced all previous Eurasian populations perhaps as recently as 50,000 years ago.



The truth lies somewhere in the middle, proposes geneticist Alan Templeton of Washington University, St Louis1. "Africans have had a huge genetic impact on humanity," he says. "But my analysis really isn’t compatible with complete replacement."

But this will not be the last word on the matter. Researchers are divided over what sorts of genetic information are most useful, and how it should be analysed. Believers in the replacement hypothesis remain unconvinced by Templeton’s arguments.

Moving story

Templeton compared DNA sequences of populations around the world. He combined information from ten genetic regions on regular chromosomes, sex chromosomes and mitochondria, the cellular powerhouses with their own genomes. By analysing many different genes, he hoped to clarify the sometimes contradictory results from individual sequences.

Variation in genes from different places enabled him to reconstruct the story of human movement. He saw where particular mutations arose, and how they spread through mating or migration.

Templeton’s reading of the genetic runes is that, post Homo erectus’ exit, there was a second major human migration out of Africa between 400,000 and 800,000 years ago and a third about 100,000 years ago. He also sees a more recent movement back into Africa from Asia, and huge amounts of genetic interchange between groups.

And this is just a start. "It’s the big picture on a very coarse timescale," Templeton says. "The potential for adding more details is truly immense."

Jury’s out

"It is very significant work - it fits the genetic, fossil and archaeological evidence," says anthropologist Jonathan Relethford of the State University of New York, Oneonta.

But geneticists who believe that recent African emigrants replaced older Eurasian populations remain sceptical. This hypothesis is based on studies of mitochondrial and Y-chromosome DNA. Martin Richards, of the University of Huddersfield, UK, who did some of these studies, thinks that genes on normal chromosomes, called autosomes, only confuse the picture.

"The data from autosomal genes are very, very impoverished," he says. The picture the Y chromosome gives, on the other hand, is "absolutely watertight", he says.

"The tree’s root is in Africa, and one branch contains all the non-Africans," says Richards. "You don’t get deeper lineages popping up all over the world."

Some archaeologists also dispute Templeton’s conclusions. Richard Klein, of Stanford University, California, says there is scant archaeological evidence of a permanent human presence in Europe before 500,000 years ago. Migrants before this point "may have found no one to interbreed with".

References
  1. Templeton, A. R. Out of Africa again and again. Nature, 416, 45 - 51, (2002).


JOHN WHITFIELD | © Nature News Service

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>