Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key gene that may be a marker of breast cancer metastasis

20.04.2007
Research focuses on aggressive breast cancer cells that resist anti-estrogen therapy

Researchers at Fox Chase Cancer Center have identified an important gene involved in the spread of breast cancer that has developed resistance to long-term estrogen deprivation. The discovery was reported today in an oral presentation during the 97th Annual Meeting of the American Association for Cancer Research in Los Angeles. The gene may prove to be a useful marker for predicting which patients have the greatest risk of breast cancer recurrence so their doctors can offer the most appropriate treatment plan.

The research focused on breast cancer cells that had grown resistant to a class of anti-hormone drugs called aromatase inhibitors. AIs shut down an enzyme, aromatase, that lets the body produce estrogen outside the ovaries. These drugs represent one of the newest, most effective forms of hormone therapy for postmenopausal women whose breast cancer tests positive for estrogen receptors, which means that estrogen in the body fuels the growth of cancer cells.

"Unfortunately, one of the drawbacks to extended use of an AI may be that some of the cancer cells develop resistance to the drug and are able to grow and spread independent of estrogen," said Fox Chase Cancer Center biochemist Joan S. Lewis-Wambi, Ph.D, who presented the results of the study of aggressive AI-resistant breast cancer cells.

"Our laboratory has developed several AI-resistant breast cancer cell lines and have found that these cells are very invasive compared to AI-sensitive breast cancer cells," she explained. "Analyses of gene activity in these AI-resistant cells have shown that they express high levels of genes associated with invasiveness and metastasis."

The researchers found, however, that they could reverse this aggressive behavior by using molecules called "small interfering RNAs" to knock out the gene called CEACAM6 (carcinoembryonic antigen-related cell adhesion molecule 6).

"Overall, these findings identify CEACAM6 as a unique mediator of the aggressiveness and spread of AI-resistant breast cancer," Lewis-Wambi said. "This suggests that it might be an important biomarker for metastasis and a possible target for novel treatments for patients with metastatic breast cancer.

Karen Mallet | EurekAlert!
Further information:
http://www.fccc.edu

Further reports about: AI-resistant Estrogen breast cancer metastasis

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>