Researchers develop economic system for expanding stem cells to form cartilage tissue

Professor Mohamed Al-Rubeai, currently a UCD Professor of Biochemical Engineering and principal investigator with the Centre for Synthesis and Chemical Biology and UCD Conway Institute has developed an economical tissue engineering approach which could offer new possibilities for restoring damaged or lost knee cartilage tissue.

Transplantation therapy

One of the most successful therapies is cell transplantation which involves removing a patient's own mature cartilage cells known as chondrocytes and growing them in vitro using tissue culture techniques. Once the cells have multiplied the patient must then undergo a second surgical procedure for implanting them into the knee. The implanted chondrocytes will then help to produce healthy cartilage.

“There are a number of new transplantation products in clinical trials that all use chondrocytes,” explains Professor Al-Rubeai. “However, these cells have limitations because when they divide they lose the potential to form cartilage and the overall treatment is expensive.”

Tissue engineering using stem cells

While at the University of Birmingham, Professor Al-Rubeai with collaborators in the Smith & Nephew research centre decided to turn their attention to tissue culture techniques using adult stem cells, which retain their ability to form cartilage when grown in vitro and enable the generation of large cell banks.

“Routine tissue culturing methodologies cannot cope with the scale of cell production required to create world stem cell banks for engineering knee cartilage tissue,” explains Professor Al-Rubeai.

His research group has optimised the tissue culture techniques so they can grow more stem cells in vitro which have the characteristics or morphology of in vivo stem cells.

“This is the first study to factor in economics. A key objective of our work is to develop a model for the biopharmaceutical industry by generating a cell bank using an affordable technique,” continues Professor Al-Rubeai. “A 17-fold expansion factor was consistently achieved and large numbers of stem cells for tissue culture engineering were obtained.”

Supporting stem cells

Once the stem cells are expanded the challenge is to engineer new cartilage tissue before implantation into the knee. To do this stem cells are supported on a bioactive scaffold which shapes the cells so they will provide a better match to the in vivo environment.

Engineers at the UCD School of Chemical and Bioprocess Engineering are now beginning to look at biodegradable gels to make a cartilage construct. These hydrogels can help form the new cartilage tissue and once implanted the gel will biodegrade.

“Presently we are using bovine stem cells but we would like to progress to using human stem cells,” concludes Professor Al-Rubeai. “Our aim now is to collaborate with clinicians so we can move this work into the clinic.”

Media Contact

Orla Donoghue alfa

More Information:

http://www.ucd.ie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors