Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop economic system for expanding stem cells to form cartilage tissue

19.04.2007
Knee osteoarthritis affects 30 million people worldwide, causing pain and joint stiffness and in severe cases restricted mobility. The limited ability of this tissue to repair itself means that surgical intervention is usually required and over 600,000 surgical procedures are performed each year in the US.

Professor Mohamed Al-Rubeai, currently a UCD Professor of Biochemical Engineering and principal investigator with the Centre for Synthesis and Chemical Biology and UCD Conway Institute has developed an economical tissue engineering approach which could offer new possibilities for restoring damaged or lost knee cartilage tissue.

Transplantation therapy

One of the most successful therapies is cell transplantation which involves removing a patient's own mature cartilage cells known as chondrocytes and growing them in vitro using tissue culture techniques. Once the cells have multiplied the patient must then undergo a second surgical procedure for implanting them into the knee. The implanted chondrocytes will then help to produce healthy cartilage.

... more about:
»Al-Rubeai »Engineering »Stem »cartilage »knee

"There are a number of new transplantation products in clinical trials that all use chondrocytes," explains Professor Al-Rubeai. "However, these cells have limitations because when they divide they lose the potential to form cartilage and the overall treatment is expensive."

Tissue engineering using stem cells

While at the University of Birmingham, Professor Al-Rubeai with collaborators in the Smith & Nephew research centre decided to turn their attention to tissue culture techniques using adult stem cells, which retain their ability to form cartilage when grown in vitro and enable the generation of large cell banks.

"Routine tissue culturing methodologies cannot cope with the scale of cell production required to create world stem cell banks for engineering knee cartilage tissue," explains Professor Al-Rubeai.

His research group has optimised the tissue culture techniques so they can grow more stem cells in vitro which have the characteristics or morphology of in vivo stem cells.

"This is the first study to factor in economics. A key objective of our work is to develop a model for the biopharmaceutical industry by generating a cell bank using an affordable technique," continues Professor Al-Rubeai. "A 17-fold expansion factor was consistently achieved and large numbers of stem cells for tissue culture engineering were obtained."

Supporting stem cells

Once the stem cells are expanded the challenge is to engineer new cartilage tissue before implantation into the knee. To do this stem cells are supported on a bioactive scaffold which shapes the cells so they will provide a better match to the in vivo environment.

Engineers at the UCD School of Chemical and Bioprocess Engineering are now beginning to look at biodegradable gels to make a cartilage construct. These hydrogels can help form the new cartilage tissue and once implanted the gel will biodegrade.

"Presently we are using bovine stem cells but we would like to progress to using human stem cells," concludes Professor Al-Rubeai. "Our aim now is to collaborate with clinicians so we can move this work into the clinic."

Orla Donoghue | alfa
Further information:
http://www.ucd.ie

Further reports about: Al-Rubeai Engineering Stem cartilage knee

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>