Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop economic system for expanding stem cells to form cartilage tissue

19.04.2007
Knee osteoarthritis affects 30 million people worldwide, causing pain and joint stiffness and in severe cases restricted mobility. The limited ability of this tissue to repair itself means that surgical intervention is usually required and over 600,000 surgical procedures are performed each year in the US.

Professor Mohamed Al-Rubeai, currently a UCD Professor of Biochemical Engineering and principal investigator with the Centre for Synthesis and Chemical Biology and UCD Conway Institute has developed an economical tissue engineering approach which could offer new possibilities for restoring damaged or lost knee cartilage tissue.

Transplantation therapy

One of the most successful therapies is cell transplantation which involves removing a patient's own mature cartilage cells known as chondrocytes and growing them in vitro using tissue culture techniques. Once the cells have multiplied the patient must then undergo a second surgical procedure for implanting them into the knee. The implanted chondrocytes will then help to produce healthy cartilage.

... more about:
»Al-Rubeai »Engineering »Stem »cartilage »knee

"There are a number of new transplantation products in clinical trials that all use chondrocytes," explains Professor Al-Rubeai. "However, these cells have limitations because when they divide they lose the potential to form cartilage and the overall treatment is expensive."

Tissue engineering using stem cells

While at the University of Birmingham, Professor Al-Rubeai with collaborators in the Smith & Nephew research centre decided to turn their attention to tissue culture techniques using adult stem cells, which retain their ability to form cartilage when grown in vitro and enable the generation of large cell banks.

"Routine tissue culturing methodologies cannot cope with the scale of cell production required to create world stem cell banks for engineering knee cartilage tissue," explains Professor Al-Rubeai.

His research group has optimised the tissue culture techniques so they can grow more stem cells in vitro which have the characteristics or morphology of in vivo stem cells.

"This is the first study to factor in economics. A key objective of our work is to develop a model for the biopharmaceutical industry by generating a cell bank using an affordable technique," continues Professor Al-Rubeai. "A 17-fold expansion factor was consistently achieved and large numbers of stem cells for tissue culture engineering were obtained."

Supporting stem cells

Once the stem cells are expanded the challenge is to engineer new cartilage tissue before implantation into the knee. To do this stem cells are supported on a bioactive scaffold which shapes the cells so they will provide a better match to the in vivo environment.

Engineers at the UCD School of Chemical and Bioprocess Engineering are now beginning to look at biodegradable gels to make a cartilage construct. These hydrogels can help form the new cartilage tissue and once implanted the gel will biodegrade.

"Presently we are using bovine stem cells but we would like to progress to using human stem cells," concludes Professor Al-Rubeai. "Our aim now is to collaborate with clinicians so we can move this work into the clinic."

Orla Donoghue | alfa
Further information:
http://www.ucd.ie

Further reports about: Al-Rubeai Engineering Stem cartilage knee

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>