Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find major susceptibility genes for Crohn's disease

17.04.2007
Discoveries reveal new genetic risk factors for the millions of people with inflammatory bowel diseases

A consortium of Canadian and American researchers led by Dr. John D. Rioux, PhD, Associate Professor of Medicine at the Montreal Heart Institute and the Université de Montréal, report in the April 15 online edition of Nature Genetics the results from a search of the entire human genome for genetic risk factors leading to the development of Crohn's disease. Specifically, using a novel approach, the authors identified that the PHOX2B, NCF4 and ATG16L1 genes constitute genetic risk factors for Crohn's disease. In addition, their study identified two regions of the genome where genetic risk factors are located but no known genes were implicated – further work will be necessary to identify the causal genes in these regions.

More than 1 million Americans and some 170,000 Canadians have Crohn's or colitis, known collectively as inflammatory bowel disease (IBD). The study's authors represent the IBD Genetics Consortium, which is funded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health. In addition to the Montreal Heart Institute and Université de Montréal, the Consortium's member institutions include the Cedars-Sinai Medical Center in Los Angeles, the University of Chicago, the Johns Hopkins University, the University of Pittsburgh, the University of Toronto, and Yale University.

Because IBD tends to run in families and is more frequent in certain ethnic populations, especially Ashkenazi Jews, scientists have long suspected a significant genetic component. Although previous genetic studies found a link between Crohn's disease and mutations in a gene known as CARD15, those mutations alone are not considered to account for the entire genetic component of disease. To identify additional genes that are associated with IBD, the international team of researchers scanned the genome—all of 22,000 or so genes— by testing more than 300,000 single nucleotide polymorphisms, or SNPs, in people with Crohn's disease and in healthy controls. The comparison of these SNPs (common genetic variants) between patient and control groups identified multiple SNPs that were strongly associated with Crohn's disease. These findings were then tested in two additional sets of patients and healthy controls in order to confirm their results.

... more about:
»ATG16L1 »Component »Crohn' »IBD »SNP

According to the corresponding author John D. Rioux, the findings highlight numerous biological pathways not previously thought to play a role in Crohn's disease. "The identification of the PHOX2B gene in this study, for example, may implicate a role for neuroendocrine cells of the intestinal epithelium as having a role to play in Crohn's Disease. In addition, the identification of the NCF4 gene indicates that altered reactive oxygen species (ROS) production, important in the generation of an effective anti-microbial response, may lead to increased risk to developing Crohn's disease". The fact that the authors also found strong association of the ATG16L1 gene provides further evidence that an individual's response to microbes has an influence on susceptibility to Crohn's disease.

Specifically, in addition to demonstrating its association to disease, these authors have shown that ATG16L1 is essential for the normal autophagic process used to degrade worn-out cellular components and help eliminate some pathogenic bacteria. "We propose that genetic variation in the ATG16L1 gene leads to alterations in how the body uses autophagy and therefore may result in increased persistence of both cellular and bacterial components, leading to inappropriate immune activation and increased risk of Crohn's disease" adds Dr. Rioux.

The findings reported in this study are expected to not only improve on the biological understanding of disease but should also have a long-term impact on clinical practice. According to Dr. Edmond-Jean Bernard, co-author and gastroenterologist at the Hotel Dieu Hospital in Montreal and the Université de Montréal "the multiple genetic risk factors we've identified provide important molecular targets for current functional studies aimed at understanding the disease and important targets for drug development to improve therapy of Crohn's disease in the future." Dr. Stephen P. James, M.D., director of the Division of Digestive Diseases and Nutrition at the National Institutes of Health's NIDDK continued by saying that "these important discoveries not only offer new hope for better therapies for patients with Crohn's disease, they also highlight the promise of the human genome project and subsequent investments by the NIH in large scale, collaborative research projects to unravel the causes of, and hopefully better treatments for complex, enigmatic diseases".

Sophie Langlois | EurekAlert!
Further information:
http://www.umontreal.ca

Further reports about: ATG16L1 Component Crohn' IBD SNP

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>