Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel antigen-cloning technique may boost efforts to develop a melanoma vaccine

17.04.2007
Experimental vaccines against other cancers and infectious diseases may also benefit

In recent years, researchers have worked to develop a number of vaccines to help the immune system fight tumors. Cancer vaccines are not intended to prevent cancer; rather, they are used to boost immune responses to preexisting tumors. Unlike traditional chemotherapy, vaccines have relatively low toxicity and, potentially, a high degree of efficacy.

To date, these vaccines have rarely been designed to directly stimulate one of the body's most critical immune responders, the helper T cells. Though helper T cells contain receptors on their cell surfaces that are capable of recognizing and binding to tumor-related antigens, scientists have been stymied by the complex and time-consuming process required to isolate and clone the antigens for vaccine development.

In working to identify a key tumor antigen in melanoma and other cancers, scientists at The Wistar Institute have now developed a novel way to clone an antigen recognized by a helper T cell. Already, Herlyn's group has used the new cloning technique to identify a new tumor antigen called ribosomal protein L8, or RPL8. Findings on the new cloning method and the newly identified tumor antigen will be published as a Priority Report in the April 15 issue of Cancer Research.

The new antigen-cloning approach may allow scientists to design vaccines capable of directly stimulating helper T cells, aiding the development of vaccines not only for cancer but also for infectious diseases, says Dorothee Herlyn, D.V.M., senior author on the study and a professor in the Molecular and Cellular Oncogenesis and Immunology programs at Wistar.

"Most of the melanoma vaccines currently in development work to activate a type of white blood cell called cytotoxic T-lymphocytes, or CTL," says Herlyn. "Though CTL have the ability to destroy cancer cells, they don't have the ability to call upon the full capabilities of the immune system, as do the helper T cells."

The new tumor antigen discovered in her lab, RPL8, is an ideal vaccine candidate because it has the potential for eliciting both helper T cells and CTL responses, Herlyn says. RPL8 is a protein involved in protein synthesis and is also expressed in normal cells. Herlyn's study shows that RPL8 is over-expressed not only in melanoma, but also in breast cancer cells and gliomas, the most common type of brain tumor, indicating that it has potential as a vaccine for patients with these tumors.

In their study, the researchers used their new cloning technique to clone copies of the RPL8 antigen from a melanoma. The scientists then showed that a peptide of RPL8 could stimulate a response in helper T cell clones and lymphocytes in four out of nine melanoma patients. The antigen created no response in cells taken from healthy donors.

The study also showed that RPL8 might contain multiple regions that are capable of eliciting an immune response, suggesting that RPL8 may be an ideal vaccine target for patients that display this antigen in tumors. According to Herlyn, these findings are important because there aren't many vaccines in development to trigger a helper T cell response for many types of cancer.

"Most of the cloned melanoma antigens that are known to target helper T cells are mutated and individual-specific, meaning that they may work in treating a single individual but will be ineffective in treating a large percentage of patients," Herlyn says.

Herlyn notes that the new antigen-cloning technique developed for this study is a major advance over the cumbersome method previously required to accomplish the task, and she anticipates that experimental vaccine developers will find it of significant value in their work.

Both the new and the old methods begin with the same steps. In order to identify and clone an antigen, researchers start with a melanoma cell or other cell of interest likely to contain relevant antigens. Based on the genes in that cell, they then make a complementary DNA (cDNA) library. Using the resulting cDNA library, the investigators can then express sequences of individual genes in recipient cells to find the cell or cells with cDNA able to stimulate T cells.

The old approach to cloning antigens adds an additional layer of complexity to the process. It requires knowing which cellular marker, or class II human leukocyte antigen (HLA), serves as a restriction element for specific T cells. Researchers must clone this restriction element and other class II HLA and transfer them into recipient cells, along with the cDNA library.

With her new technique, Herlyn expresses the cDNA library in bacteriophages that are incubated with B cells from the same patient from whom the T cells were derived. Because B cells are antigen-presenting cells, once they have picked up, or "eaten," the phages, the B cells will express the peptides that are encoded by the cDNA library. The new process eliminates the need to transfer the HLA genes into recipient cells and match the genes to each T cell type as it permits the B cells to present the peptide to the T cells in context with their own HLA class II.

Herlyn and her group now plan to use the RPL8 antigen to develop a melanoma vaccine for patients with advanced disease. "And because the RPL8 antigen is expressed by breast cancer and gliomas, we may be able to develop a vaccine that could be used to treat these types of cancer, as well."

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: Antigen B cells Cloning HLA Herlyn RPL8 T cells Vaccine antigen-cloning cDNA melanoma

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>