Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel antigen-cloning technique may boost efforts to develop a melanoma vaccine

17.04.2007
Experimental vaccines against other cancers and infectious diseases may also benefit

In recent years, researchers have worked to develop a number of vaccines to help the immune system fight tumors. Cancer vaccines are not intended to prevent cancer; rather, they are used to boost immune responses to preexisting tumors. Unlike traditional chemotherapy, vaccines have relatively low toxicity and, potentially, a high degree of efficacy.

To date, these vaccines have rarely been designed to directly stimulate one of the body's most critical immune responders, the helper T cells. Though helper T cells contain receptors on their cell surfaces that are capable of recognizing and binding to tumor-related antigens, scientists have been stymied by the complex and time-consuming process required to isolate and clone the antigens for vaccine development.

In working to identify a key tumor antigen in melanoma and other cancers, scientists at The Wistar Institute have now developed a novel way to clone an antigen recognized by a helper T cell. Already, Herlyn's group has used the new cloning technique to identify a new tumor antigen called ribosomal protein L8, or RPL8. Findings on the new cloning method and the newly identified tumor antigen will be published as a Priority Report in the April 15 issue of Cancer Research.

The new antigen-cloning approach may allow scientists to design vaccines capable of directly stimulating helper T cells, aiding the development of vaccines not only for cancer but also for infectious diseases, says Dorothee Herlyn, D.V.M., senior author on the study and a professor in the Molecular and Cellular Oncogenesis and Immunology programs at Wistar.

"Most of the melanoma vaccines currently in development work to activate a type of white blood cell called cytotoxic T-lymphocytes, or CTL," says Herlyn. "Though CTL have the ability to destroy cancer cells, they don't have the ability to call upon the full capabilities of the immune system, as do the helper T cells."

The new tumor antigen discovered in her lab, RPL8, is an ideal vaccine candidate because it has the potential for eliciting both helper T cells and CTL responses, Herlyn says. RPL8 is a protein involved in protein synthesis and is also expressed in normal cells. Herlyn's study shows that RPL8 is over-expressed not only in melanoma, but also in breast cancer cells and gliomas, the most common type of brain tumor, indicating that it has potential as a vaccine for patients with these tumors.

In their study, the researchers used their new cloning technique to clone copies of the RPL8 antigen from a melanoma. The scientists then showed that a peptide of RPL8 could stimulate a response in helper T cell clones and lymphocytes in four out of nine melanoma patients. The antigen created no response in cells taken from healthy donors.

The study also showed that RPL8 might contain multiple regions that are capable of eliciting an immune response, suggesting that RPL8 may be an ideal vaccine target for patients that display this antigen in tumors. According to Herlyn, these findings are important because there aren't many vaccines in development to trigger a helper T cell response for many types of cancer.

"Most of the cloned melanoma antigens that are known to target helper T cells are mutated and individual-specific, meaning that they may work in treating a single individual but will be ineffective in treating a large percentage of patients," Herlyn says.

Herlyn notes that the new antigen-cloning technique developed for this study is a major advance over the cumbersome method previously required to accomplish the task, and she anticipates that experimental vaccine developers will find it of significant value in their work.

Both the new and the old methods begin with the same steps. In order to identify and clone an antigen, researchers start with a melanoma cell or other cell of interest likely to contain relevant antigens. Based on the genes in that cell, they then make a complementary DNA (cDNA) library. Using the resulting cDNA library, the investigators can then express sequences of individual genes in recipient cells to find the cell or cells with cDNA able to stimulate T cells.

The old approach to cloning antigens adds an additional layer of complexity to the process. It requires knowing which cellular marker, or class II human leukocyte antigen (HLA), serves as a restriction element for specific T cells. Researchers must clone this restriction element and other class II HLA and transfer them into recipient cells, along with the cDNA library.

With her new technique, Herlyn expresses the cDNA library in bacteriophages that are incubated with B cells from the same patient from whom the T cells were derived. Because B cells are antigen-presenting cells, once they have picked up, or "eaten," the phages, the B cells will express the peptides that are encoded by the cDNA library. The new process eliminates the need to transfer the HLA genes into recipient cells and match the genes to each T cell type as it permits the B cells to present the peptide to the T cells in context with their own HLA class II.

Herlyn and her group now plan to use the RPL8 antigen to develop a melanoma vaccine for patients with advanced disease. "And because the RPL8 antigen is expressed by breast cancer and gliomas, we may be able to develop a vaccine that could be used to treat these types of cancer, as well."

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: Antigen B cells Cloning HLA Herlyn RPL8 T cells Vaccine antigen-cloning cDNA melanoma

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>