Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soft tissue taken from Tyrannosaurus rex fossil yields original protein

13.04.2007
What happens when a 68 million-year-old Tyrannosaurus Rex meets 21st century medical science?

A North Carolina State University researcher and her colleagues at Harvard Medical School and Beth Israel Deaconess Medical Center found out when they confirmed the existence of protein in soft tissue recovered from the bone of a 68 million-year-old T. rex. Their results may both change the way that people think about fossil preservation and present a new method for studying diseases such as cancer.

Dr. Mary Schweitzer, assistant professor of paleontology at NC State with a joint appointment at the N.C. Museum of Natural Sciences, had previously discovered soft tissue in the leg bone of a T. rex recovered in 2003 from the Hell Creek formation in Montana.

After her own chemical and molecular analyses of the tissue indicated that original protein fragments might be preserved, she turned to colleagues Dr. John Asara, director of the mass spectrometry core facility at Beth Israel Deaconess Medical Center and instructor in pathology at Harvard Medical School and co-author Dr. Lewis Cantley, to see if they could provide the "nail in the coffin" that would confirm her suspicions. That nail would be sequence – the amino acid 'letters' used to make collagen, a fibrous protein found in bone.

... more about:
»Collagen »Fossil »Spectrometry »amino acid »dinosaur

Schweitzer's findings – and those of her colleagues – appear in the April 13 edition of the journal Science.

Bone is a composite material, consisting of both protein and mineral. When minerals are removed from modern bone, a collagen matrix – fibrous, resilient material that gives the bone its structure and flexibility – is left behind. When Schweitzer demineralized the T. rex bone, she was surprised to find such a matrix, because current theories of fossilization held that no original organic material could survive that long.

To see if the material had the characteristic cross-banded "stripes" that indicate collagen, Schweitzer and her colleagues examined the resultant soft tissue with both an electron microscope and atomic force microscopy. They then tested it against various antibodies that are known to react with collagen.

"We looked for collagen because it's plentiful, it's durable, and it has been recovered from other fossil materials, although none as old as this T. rex," Schweitzer says. "It's also a relatively easy molecule to identify, and it's not something that any microbes living in the immediate environment could produce. So identifying collagen in the soft tissue would indicate that it is original to the T. rex – that the tissue contains remnants of the molecules produced by the dinosaur, though highly altered."

But the evidence that Schweitzer had managed to find for the existence of collagen, while strongly suggestive, was not definitive. Fortunately, a mass spectrometry technique developed for studying low-level proteins in human diseases in Asara's mass spectrometry core facility was able to do what hadn't been possible before: provide the sequence of a 68 million-year-old protein and thus identify it.

Mass spectrometry measures the mass to charge ratio of individual molecules (peptides) that have been charged, identifying them by weight. Peptide fragmentation patterns reveal the amino acid sequence. The advantage of this method is that it extremely sensitive and can be used in cases where only very small amounts of material are available for analysis. That was definitely true of the T. rex sample, which only produced a miniscule amount of remnant protein, and the protein was in a mixture of other material that had remained after the extraction process.

Asara first applied the method to modern ostrich and then to 160,000- 600,000 year-old mastodon to demonstrate the efficiency and accuracy of their method while sequencing novel sequences unique to mastodon. Then he successfully sequenced the dinosaur protein, identifying the amino acids and confirming that the material from the T. rex was collagen. When the researchers compared the collagen sequences to a database that contains existing sequences from modern species, they found that the T. rex sequence had similarities to those of chicken, frog and newt.

"The similarity to chicken is definitely what we would expect given the relationship between modern birds and dinosaurs," Schweitzer says. "From a paleo standpoint, sequence data really is the nail in the coffin that confirms the preservation of these tissues. This data will help us learn more about dinosaurs' evolutionary relationships, about how preservation happens, and about how molecules degrade over time, which could also have some important medical implications for treating disease."

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

Further reports about: Collagen Fossil Spectrometry amino acid dinosaur

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>