Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soft tissue taken from Tyrannosaurus rex fossil yields original protein

13.04.2007
What happens when a 68 million-year-old Tyrannosaurus Rex meets 21st century medical science?

A North Carolina State University researcher and her colleagues at Harvard Medical School and Beth Israel Deaconess Medical Center found out when they confirmed the existence of protein in soft tissue recovered from the bone of a 68 million-year-old T. rex. Their results may both change the way that people think about fossil preservation and present a new method for studying diseases such as cancer.

Dr. Mary Schweitzer, assistant professor of paleontology at NC State with a joint appointment at the N.C. Museum of Natural Sciences, had previously discovered soft tissue in the leg bone of a T. rex recovered in 2003 from the Hell Creek formation in Montana.

After her own chemical and molecular analyses of the tissue indicated that original protein fragments might be preserved, she turned to colleagues Dr. John Asara, director of the mass spectrometry core facility at Beth Israel Deaconess Medical Center and instructor in pathology at Harvard Medical School and co-author Dr. Lewis Cantley, to see if they could provide the "nail in the coffin" that would confirm her suspicions. That nail would be sequence – the amino acid 'letters' used to make collagen, a fibrous protein found in bone.

... more about:
»Collagen »Fossil »Spectrometry »amino acid »dinosaur

Schweitzer's findings – and those of her colleagues – appear in the April 13 edition of the journal Science.

Bone is a composite material, consisting of both protein and mineral. When minerals are removed from modern bone, a collagen matrix – fibrous, resilient material that gives the bone its structure and flexibility – is left behind. When Schweitzer demineralized the T. rex bone, she was surprised to find such a matrix, because current theories of fossilization held that no original organic material could survive that long.

To see if the material had the characteristic cross-banded "stripes" that indicate collagen, Schweitzer and her colleagues examined the resultant soft tissue with both an electron microscope and atomic force microscopy. They then tested it against various antibodies that are known to react with collagen.

"We looked for collagen because it's plentiful, it's durable, and it has been recovered from other fossil materials, although none as old as this T. rex," Schweitzer says. "It's also a relatively easy molecule to identify, and it's not something that any microbes living in the immediate environment could produce. So identifying collagen in the soft tissue would indicate that it is original to the T. rex – that the tissue contains remnants of the molecules produced by the dinosaur, though highly altered."

But the evidence that Schweitzer had managed to find for the existence of collagen, while strongly suggestive, was not definitive. Fortunately, a mass spectrometry technique developed for studying low-level proteins in human diseases in Asara's mass spectrometry core facility was able to do what hadn't been possible before: provide the sequence of a 68 million-year-old protein and thus identify it.

Mass spectrometry measures the mass to charge ratio of individual molecules (peptides) that have been charged, identifying them by weight. Peptide fragmentation patterns reveal the amino acid sequence. The advantage of this method is that it extremely sensitive and can be used in cases where only very small amounts of material are available for analysis. That was definitely true of the T. rex sample, which only produced a miniscule amount of remnant protein, and the protein was in a mixture of other material that had remained after the extraction process.

Asara first applied the method to modern ostrich and then to 160,000- 600,000 year-old mastodon to demonstrate the efficiency and accuracy of their method while sequencing novel sequences unique to mastodon. Then he successfully sequenced the dinosaur protein, identifying the amino acids and confirming that the material from the T. rex was collagen. When the researchers compared the collagen sequences to a database that contains existing sequences from modern species, they found that the T. rex sequence had similarities to those of chicken, frog and newt.

"The similarity to chicken is definitely what we would expect given the relationship between modern birds and dinosaurs," Schweitzer says. "From a paleo standpoint, sequence data really is the nail in the coffin that confirms the preservation of these tissues. This data will help us learn more about dinosaurs' evolutionary relationships, about how preservation happens, and about how molecules degrade over time, which could also have some important medical implications for treating disease."

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

Further reports about: Collagen Fossil Spectrometry amino acid dinosaur

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>