Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How molecular clocks can help chickens get wings

13.04.2007
A fundamental biological question is on how the body plan is organized during embryonic development. Embryos start as a group of non-differentiated cells that divide and eventually specialise into the different tissues and organs of the body. But how do cells know when to go through their different destinies?

Research to be published on the 27th of April edition of the “Journal of Molecular Biology” by a group of Portuguese scientists provides a piece of the puzzle by showing that formation of the cartilage during chicken wing embryonic development is linked to a gene called hairy2, which seems to act as molecular clock helping cells to know when is time to stop dividing and differentiate.

Their research also suggests that these molecular clocks can be a widespread time measurement mechanism among multicellular organisms. The work has important implications by contributing to a better understanding of embryonic development and consequently also of the diseases resulting from problems in it.

Cyclic or oscillatory genes are genes characterised by going from inactivated (not expressed) to activated (expressed) and back to an inactivated state in continuous cycles. They were discovered almost ten years ago involved in the embryo early segmentation steps although their function in this process is unclear and for a long time they were not found anywhere else. Recent research, however, have report an oscillatory gene in several cells of mouse not connected to segmentation, raising the prospect that their presence could be much more widespread than previously thought.

In order to test this hypothesis Susana Pascoal and Isabel Palmeirim (which was associated with the discovery of the first cyclic genes) at Minho University, Portugal together with colleagues from Gulbenkian Institute of Science and Lisbon University in Portugal and Pierre and Marie Currie University in France decided to study the embryonic development of the chicken wing (one of the most common model of embryonic studies) looking at the expression of the gene hairy2, which is the chicken equivalent of the cyclic gene recently reported in mouse cells.

Limbs in vertebrates develop from small buds on the side of the body and as these buds grow, the undifferentiated cells in them first multiply and then differentiate into the various tissues of the limb, including the cartilage and later the bone that make up the limb skeleton. Pascoal, Palmeirim and colleagues started their study by following, during the different stages of embryonic development, the cells constituting the wing bud to find that hairy2 was expressed in cartilage precursor cells. In fact, it was found that hairy2 oscillated between inactivated and activated states while these cells divided, but, as soon as cells started differentiating hairy2 oscillations stopped and a cartilaginous element of the wing is formed. Furthermore, as cartilage precursor cells divide and the limb bud grows it is even possible to see a wavelike expression of the hairy2 gene through adjacent cells, starting from cells with a low hairy2 expression through to moderate and then onto high hairy2 levels of expression.

Pascoal, Palmeirim and colleagues measured each hairy2 cycle – corresponding to the time necessary for the gene to go from an inactivated state, into activation and back into inactivation – to find that these lasted exactly 6 hours.

The next step was to see if the hairy2 cycle could be related with the formation of cartilage/bone elements in chicken wing since it has been proposed that cyclic genes can work as molecular clocks helping cells decide when to change behaviour. In order to test this supposition the team of researcher followed the formation of the 2nd phalanx of the wing and found that the average time for this process was 12 hours which corresponded to two hairy2 cycles.

This result led Pascoal, Palmeirim and colleagues to propose that the 2nd phalanx precursor cells were able to count hairy2 cycles and use the gene as a molecular clock to measure time and allow an accurate control of the cells growth and differentiation. In the case of the 2nd phalanx the cells “counted” two 6-hours cycles for the formation of one bone element (12 hours). Furthermore, the fact that time control is crucial for development and that cyclic genes seem to present in several embryonic tissues led the researchers to also suggest that oscillators (or cyclic genes) playing the role of molecular clocks are probably quite widespread among the different embryonic tissues of multicellular organisms.

The researchers also suggest that the reason why it has been so difficult to find prove of these cyclic genes comes from the fact that only when adjacent cells are in synchrony (activated-inactivated-activated-etc) is possible to detect a pattern big enough to identify the presence of a molecular clock.

"The discovery of the first cyclic gene by Palmeirim and colleagues was an amazing discovery and our work now supports the idea they are used as molecular clocks by embryonic cells in several tissues” says Susana Pascoal, the first author of the article “we know this is only part of the story, but it is crucial information to understand how embryonic development is regulated”

Pascoal, Palmeirim and colleagues’ work has in fact many and important implications as it contributes to the understanding of how embryos develop, and consequently also the bases of human congenital development defects, but also helps paving the way for one day future technology aiming at biological tissue engineering and repair be developed.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.smalllinks.com/1EO

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>