Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structural basis for photoswitching in fluorescent proteins brought into focus

12.04.2007
UO discovery likely to advance uses of these already revolutionary molecules

University of Oregon scientists have identified molecular features that determine the light-emitting ability green fluorescent proteins, and by strategically inserting a single oxygen atom they were able to keep the lights turned off for up to 65 hours.

The findings, published online this week by the Proceedings of the National Academy of Sciences, likely are applicable to most photoswitchable fluorescent proteins, said S. James Remington, professor of physics and member of the UO Institute of Molecular Biology.

"This new model makes specific predictions and improves the qualities of the protein as a photo-switchable label," Remington said. "It gives us the first picture of how these molecules can be switched on and off. That allows us to design new variants to make the proteins more useful."

... more about:
»fluorescent »oxygen atom »structure

For more than a decade, fluorescent proteins – first isolated in jellyfish and since found in a variety of colors from coral reef organisms – revolutionized molecular biology, allowing scientists to use them as markers for genetic expression, to locate molecules and observe activity within cells.

The recent discovery of photoswitchable fluorescent proteins – which can be manipulated with a laser – has been a significant development for cellular research.

"Photoswitchable fluorescent proteins have tremendous advantages over passive proteins," Remington said. "You can label all molecules but using a laser under a microscope, you can activate only a small group of them. That lets you follow the motion of subsets of molecules. We wanted to understand the process, so that we can permanently switch them off and on or vary the time delay."

However, he said, the mechanism of photoswitching was unknown, and in many cases the proteins returned to their stable state randomly and spontaneously.

Using a combination of rational mutagenesis and directed evolution, UO doctoral student J. Nathan Henderson determined high-resolution crystal structures of both the on and off states of a fluorescent protein isolated from a sea anemone.

In the stable or fluorescent state of the molecule, two side chains of atoms align in a coplanar fashion, flat and in orderly fashion. When hit with bright laser light, the researchers observed that the protein rapidly went dark as the rings rotated about 180 degrees and flip by some 45 degrees, coming to rest in a non-coplanar and unstable alignment. The two structures gave the researchers a chance to observe changes in the interactions between neighboring groups.

Remington said that in the dark state, the molecule absorbs ultraviolet light and doesn't emit any light at all. However, when the chromophore (a group of atoms and electrons forming part of an molecule) absorbs ultraviolet light, it occasionally ionizes and become negatively charged. This causes the rings to flip back into the fluorescent state.

Having control of light emission would allow for more precise studies within cells, he said.

Henderson studied the structures, noticing that in the dark state there was an unfavorable interaction where carbon and oxygen atoms were adjacent to each other. "Nathan looked at this and wondered what would happen if an oxygen atom was inserted at a precise place," Remington said. "That would make for a favorable interaction that stabilized the dark state. Based on the structure, Henderson made a single mutation that delays the switch-on time from five minutes to 65 hours.

Eventually, he added, the ability to control the on-off states could lead to improvements in optical memory, such as single molecule information storage, in addition to enhancing microscopic work and molecular labeling.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu
http://morel.uoregon.edu/facres/remington.html

Further reports about: fluorescent oxygen atom structure

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>