Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Implicate Gene in Vitiligo and Other Autoimmune Diseases

12.04.2007
In a study appearing in the March 22 New England Journal of Medicine, scientists supported by the National Institutes of Health’s National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) have discovered a connection between a specific gene and the inflammatory skin condition vitiligo, as well as a possible host of autoimmune diseases.

Vitiligo is a chronic condition in which melanocytes (the cells that make pigment) in the skin are destroyed. As a result, white patches appear on the skin in different parts of the body. Similar patches also appear on both the mucous membranes (tissues that line the inside of the mouth and nose), and perhaps in the retina (inner layer of the eyeball). The hair that grows on areas affected by vitiligo sometimes turns white.

The researchers began a search for genes involved in vitiligo almost a decade ago with the help of the Vitiligo Society in the United Kingdom. “In the beginning we were looking for multiple family members with vitiligo,” says Richard Spritz, M.D., director of the Human Medical Genetics Program at the University of Colorado at Denver and Health Sciences Center and lead investigator for the study. The researchers sent a questionnaire to members of the society, asking them about their own vitiligo and whether other family members were affected. As part of the questionnaire, they also asked about other autoimmune diseases. What they learned was that vitiligo was “very highly associated” with a number of other autoimmune diseases, mostly thyroid disease, but also pernicious anemia, rheumatoid arthritis, psoriasis, lupus, Addison’s disease, and adult-onset autoimmune diabetes.

That finding prompted the researchers to study families with multiple affected members and to look for similarities in genes among those who were affected. By searching the genome, they discovered a gene, NALP1, that was key to predisposing people to vitiligo and other autoimmune diseases, particularly autoimmune thyroid disease, says Dr. Spritz. “We know that about 20 percent of people with vitiligo also get autoimmune thyroid disease, and this gene may be involved in mediating both of those,” he says.

Dr. Spritz says the implications of this finding are exciting. The identified gene controls part of what is called the innate immune system, which is our body’s first defense against infection, he says. “When we are attacked by viruses or bacteria, the innate immune system stimulates the inflammatory pathways and calls the rest of the immune system to action. NALP1 is probably a receptor for bacterial or viral signals. We don’t know what these signals are, but now that we know what the gene is, we can use that knowledge to search for the signals that trigger autoimmune disease.”

“All autoimmune diseases involve the interaction of multiple genes and environmental triggers,” he continues. “You are born with your genes, but you are not born with these diseases. Something happens. We don’t know what the triggers are that start these diseases, but if we did, maybe we could avoid them or even block the process. In fact, it may even be possible to actually stop the autoimmune disease,” he says.

The most immediate application of this research might be for the disease that began the research: vitiligo. Doctors usually treat vitiligo with ultraviolet (UV) light to stimulate skin repigmentation. Scientists also know that there is one medication available (approved for treating rheumatoid arthritis) that blocks an inflammatory pathway thought to be controlled by NALP1. The possibility of combining a drug with UV light to improve vitiligo treatment is intriguing, and Dr. Spritz is now interested in finding out more about how the medication might affect people with vitiligo.

NIAMS Director Stephen I. Katz, M.D., Ph.D., calls the discovery of the NALP1-autoimmunity connection an important advance in the understanding of autoimmune diseases that collectively affect an estimated 15 million to 25 million Americans. “The more we understand about these diseases, including the genes that predispose to them and the environmental factors that trigger them, the closer we come to better treatments and even preventive measures,” he says.

Additional support for this research was provided by the National Institute of Allergy and Infectious Diseases, the National Institute of Diabetes and Digestive and Kidney Diseases, the U.K. Vitiligo Society and the National Vitiligo Foundation.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services’ National Institutes of Health, is to support research into the causes, treatment and prevention of arthritis and musculoskeletal and skin diseases; the training of basic and clinical scientists to carry out this research; and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Ray Fleming | EurekAlert!
Further information:
http://www.nih.gov
http://www.niams.nih.gov

Further reports about: NIAMS Spritz autoimmune autoimmune diseases vitiligo

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>