Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Implicate Gene in Vitiligo and Other Autoimmune Diseases

In a study appearing in the March 22 New England Journal of Medicine, scientists supported by the National Institutes of Health’s National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) have discovered a connection between a specific gene and the inflammatory skin condition vitiligo, as well as a possible host of autoimmune diseases.

Vitiligo is a chronic condition in which melanocytes (the cells that make pigment) in the skin are destroyed. As a result, white patches appear on the skin in different parts of the body. Similar patches also appear on both the mucous membranes (tissues that line the inside of the mouth and nose), and perhaps in the retina (inner layer of the eyeball). The hair that grows on areas affected by vitiligo sometimes turns white.

The researchers began a search for genes involved in vitiligo almost a decade ago with the help of the Vitiligo Society in the United Kingdom. “In the beginning we were looking for multiple family members with vitiligo,” says Richard Spritz, M.D., director of the Human Medical Genetics Program at the University of Colorado at Denver and Health Sciences Center and lead investigator for the study. The researchers sent a questionnaire to members of the society, asking them about their own vitiligo and whether other family members were affected. As part of the questionnaire, they also asked about other autoimmune diseases. What they learned was that vitiligo was “very highly associated” with a number of other autoimmune diseases, mostly thyroid disease, but also pernicious anemia, rheumatoid arthritis, psoriasis, lupus, Addison’s disease, and adult-onset autoimmune diabetes.

That finding prompted the researchers to study families with multiple affected members and to look for similarities in genes among those who were affected. By searching the genome, they discovered a gene, NALP1, that was key to predisposing people to vitiligo and other autoimmune diseases, particularly autoimmune thyroid disease, says Dr. Spritz. “We know that about 20 percent of people with vitiligo also get autoimmune thyroid disease, and this gene may be involved in mediating both of those,” he says.

Dr. Spritz says the implications of this finding are exciting. The identified gene controls part of what is called the innate immune system, which is our body’s first defense against infection, he says. “When we are attacked by viruses or bacteria, the innate immune system stimulates the inflammatory pathways and calls the rest of the immune system to action. NALP1 is probably a receptor for bacterial or viral signals. We don’t know what these signals are, but now that we know what the gene is, we can use that knowledge to search for the signals that trigger autoimmune disease.”

“All autoimmune diseases involve the interaction of multiple genes and environmental triggers,” he continues. “You are born with your genes, but you are not born with these diseases. Something happens. We don’t know what the triggers are that start these diseases, but if we did, maybe we could avoid them or even block the process. In fact, it may even be possible to actually stop the autoimmune disease,” he says.

The most immediate application of this research might be for the disease that began the research: vitiligo. Doctors usually treat vitiligo with ultraviolet (UV) light to stimulate skin repigmentation. Scientists also know that there is one medication available (approved for treating rheumatoid arthritis) that blocks an inflammatory pathway thought to be controlled by NALP1. The possibility of combining a drug with UV light to improve vitiligo treatment is intriguing, and Dr. Spritz is now interested in finding out more about how the medication might affect people with vitiligo.

NIAMS Director Stephen I. Katz, M.D., Ph.D., calls the discovery of the NALP1-autoimmunity connection an important advance in the understanding of autoimmune diseases that collectively affect an estimated 15 million to 25 million Americans. “The more we understand about these diseases, including the genes that predispose to them and the environmental factors that trigger them, the closer we come to better treatments and even preventive measures,” he says.

Additional support for this research was provided by the National Institute of Allergy and Infectious Diseases, the National Institute of Diabetes and Digestive and Kidney Diseases, the U.K. Vitiligo Society and the National Vitiligo Foundation.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services’ National Institutes of Health, is to support research into the causes, treatment and prevention of arthritis and musculoskeletal and skin diseases; the training of basic and clinical scientists to carry out this research; and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS Web site at

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit

Ray Fleming | EurekAlert!
Further information:

Further reports about: NIAMS Spritz autoimmune autoimmune diseases vitiligo

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>