Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Implicate Gene in Vitiligo and Other Autoimmune Diseases

12.04.2007
In a study appearing in the March 22 New England Journal of Medicine, scientists supported by the National Institutes of Health’s National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) have discovered a connection between a specific gene and the inflammatory skin condition vitiligo, as well as a possible host of autoimmune diseases.

Vitiligo is a chronic condition in which melanocytes (the cells that make pigment) in the skin are destroyed. As a result, white patches appear on the skin in different parts of the body. Similar patches also appear on both the mucous membranes (tissues that line the inside of the mouth and nose), and perhaps in the retina (inner layer of the eyeball). The hair that grows on areas affected by vitiligo sometimes turns white.

The researchers began a search for genes involved in vitiligo almost a decade ago with the help of the Vitiligo Society in the United Kingdom. “In the beginning we were looking for multiple family members with vitiligo,” says Richard Spritz, M.D., director of the Human Medical Genetics Program at the University of Colorado at Denver and Health Sciences Center and lead investigator for the study. The researchers sent a questionnaire to members of the society, asking them about their own vitiligo and whether other family members were affected. As part of the questionnaire, they also asked about other autoimmune diseases. What they learned was that vitiligo was “very highly associated” with a number of other autoimmune diseases, mostly thyroid disease, but also pernicious anemia, rheumatoid arthritis, psoriasis, lupus, Addison’s disease, and adult-onset autoimmune diabetes.

That finding prompted the researchers to study families with multiple affected members and to look for similarities in genes among those who were affected. By searching the genome, they discovered a gene, NALP1, that was key to predisposing people to vitiligo and other autoimmune diseases, particularly autoimmune thyroid disease, says Dr. Spritz. “We know that about 20 percent of people with vitiligo also get autoimmune thyroid disease, and this gene may be involved in mediating both of those,” he says.

Dr. Spritz says the implications of this finding are exciting. The identified gene controls part of what is called the innate immune system, which is our body’s first defense against infection, he says. “When we are attacked by viruses or bacteria, the innate immune system stimulates the inflammatory pathways and calls the rest of the immune system to action. NALP1 is probably a receptor for bacterial or viral signals. We don’t know what these signals are, but now that we know what the gene is, we can use that knowledge to search for the signals that trigger autoimmune disease.”

“All autoimmune diseases involve the interaction of multiple genes and environmental triggers,” he continues. “You are born with your genes, but you are not born with these diseases. Something happens. We don’t know what the triggers are that start these diseases, but if we did, maybe we could avoid them or even block the process. In fact, it may even be possible to actually stop the autoimmune disease,” he says.

The most immediate application of this research might be for the disease that began the research: vitiligo. Doctors usually treat vitiligo with ultraviolet (UV) light to stimulate skin repigmentation. Scientists also know that there is one medication available (approved for treating rheumatoid arthritis) that blocks an inflammatory pathway thought to be controlled by NALP1. The possibility of combining a drug with UV light to improve vitiligo treatment is intriguing, and Dr. Spritz is now interested in finding out more about how the medication might affect people with vitiligo.

NIAMS Director Stephen I. Katz, M.D., Ph.D., calls the discovery of the NALP1-autoimmunity connection an important advance in the understanding of autoimmune diseases that collectively affect an estimated 15 million to 25 million Americans. “The more we understand about these diseases, including the genes that predispose to them and the environmental factors that trigger them, the closer we come to better treatments and even preventive measures,” he says.

Additional support for this research was provided by the National Institute of Allergy and Infectious Diseases, the National Institute of Diabetes and Digestive and Kidney Diseases, the U.K. Vitiligo Society and the National Vitiligo Foundation.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services’ National Institutes of Health, is to support research into the causes, treatment and prevention of arthritis and musculoskeletal and skin diseases; the training of basic and clinical scientists to carry out this research; and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Ray Fleming | EurekAlert!
Further information:
http://www.nih.gov
http://www.niams.nih.gov

Further reports about: NIAMS Spritz autoimmune autoimmune diseases vitiligo

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>