Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Implicate Gene in Vitiligo and Other Autoimmune Diseases

12.04.2007
In a study appearing in the March 22 New England Journal of Medicine, scientists supported by the National Institutes of Health’s National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) have discovered a connection between a specific gene and the inflammatory skin condition vitiligo, as well as a possible host of autoimmune diseases.

Vitiligo is a chronic condition in which melanocytes (the cells that make pigment) in the skin are destroyed. As a result, white patches appear on the skin in different parts of the body. Similar patches also appear on both the mucous membranes (tissues that line the inside of the mouth and nose), and perhaps in the retina (inner layer of the eyeball). The hair that grows on areas affected by vitiligo sometimes turns white.

The researchers began a search for genes involved in vitiligo almost a decade ago with the help of the Vitiligo Society in the United Kingdom. “In the beginning we were looking for multiple family members with vitiligo,” says Richard Spritz, M.D., director of the Human Medical Genetics Program at the University of Colorado at Denver and Health Sciences Center and lead investigator for the study. The researchers sent a questionnaire to members of the society, asking them about their own vitiligo and whether other family members were affected. As part of the questionnaire, they also asked about other autoimmune diseases. What they learned was that vitiligo was “very highly associated” with a number of other autoimmune diseases, mostly thyroid disease, but also pernicious anemia, rheumatoid arthritis, psoriasis, lupus, Addison’s disease, and adult-onset autoimmune diabetes.

That finding prompted the researchers to study families with multiple affected members and to look for similarities in genes among those who were affected. By searching the genome, they discovered a gene, NALP1, that was key to predisposing people to vitiligo and other autoimmune diseases, particularly autoimmune thyroid disease, says Dr. Spritz. “We know that about 20 percent of people with vitiligo also get autoimmune thyroid disease, and this gene may be involved in mediating both of those,” he says.

Dr. Spritz says the implications of this finding are exciting. The identified gene controls part of what is called the innate immune system, which is our body’s first defense against infection, he says. “When we are attacked by viruses or bacteria, the innate immune system stimulates the inflammatory pathways and calls the rest of the immune system to action. NALP1 is probably a receptor for bacterial or viral signals. We don’t know what these signals are, but now that we know what the gene is, we can use that knowledge to search for the signals that trigger autoimmune disease.”

“All autoimmune diseases involve the interaction of multiple genes and environmental triggers,” he continues. “You are born with your genes, but you are not born with these diseases. Something happens. We don’t know what the triggers are that start these diseases, but if we did, maybe we could avoid them or even block the process. In fact, it may even be possible to actually stop the autoimmune disease,” he says.

The most immediate application of this research might be for the disease that began the research: vitiligo. Doctors usually treat vitiligo with ultraviolet (UV) light to stimulate skin repigmentation. Scientists also know that there is one medication available (approved for treating rheumatoid arthritis) that blocks an inflammatory pathway thought to be controlled by NALP1. The possibility of combining a drug with UV light to improve vitiligo treatment is intriguing, and Dr. Spritz is now interested in finding out more about how the medication might affect people with vitiligo.

NIAMS Director Stephen I. Katz, M.D., Ph.D., calls the discovery of the NALP1-autoimmunity connection an important advance in the understanding of autoimmune diseases that collectively affect an estimated 15 million to 25 million Americans. “The more we understand about these diseases, including the genes that predispose to them and the environmental factors that trigger them, the closer we come to better treatments and even preventive measures,” he says.

Additional support for this research was provided by the National Institute of Allergy and Infectious Diseases, the National Institute of Diabetes and Digestive and Kidney Diseases, the U.K. Vitiligo Society and the National Vitiligo Foundation.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services’ National Institutes of Health, is to support research into the causes, treatment and prevention of arthritis and musculoskeletal and skin diseases; the training of basic and clinical scientists to carry out this research; and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Ray Fleming | EurekAlert!
Further information:
http://www.nih.gov
http://www.niams.nih.gov

Further reports about: NIAMS Spritz autoimmune autoimmune diseases vitiligo

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>