Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers discover variants of natural tumor suppressor

11.04.2007
Finding could lead to therapy targets for diabetes, heart disease and cancer

Building on their 2005 discovery of an enzyme that is a natural tumor suppressor, researchers at the University of California, San Diego (UCSD) School of Medicine have now identified two variants of that enzyme which could provide new targets for therapies to treat diabetes, heart and neurological disease. The findings, by Alexandra C. Newton, Ph.D., UCSD professor of pharmacology, and colleagues are published in the current edition of the journal Molecular Cell.

Previous research by Newton's lab, also published in Molecular Cell, described the discovery of an enzyme they named PH domain Leucine-rich repeat Protein Phosphatase (PHLPP, pronounced "flip") that turns off signaling of the Akt/protein kinase B, a protein which controls cell growth, proliferation and survival.

The new work describes a second family member, PHLPP2, which also inactivates Akt, inhibiting the cell cycle progression and promoting cell death. However, PHLPP1 and PHLPP2 control three different disease pathways. While both are important in cancer, PHLPP 1 impacts an important pathway in diabetes and PHLPP2 could be useful in fighting heart and neurological disease.

... more about:
»Diabetes »PHLPP »PHLPP2 »UCSD »neurological »variants

"We first discovered that PHLPP controls Akt, which is the driver on the pathway to tumor growth," said Newton. "PHLPP is like a brake that, when on, slows the driver but when 'off' allows the driver to move. In cancer, we want the driver to brake, to prevent cell proliferation leading to tumor growth. But in diabetes, heart or neurological disease, where we want to promote cell growth and survival, we don't want to slow the driver down."

The researchers have now found that PHLPP1 controls the driver along one pathway – Akt2, which is more closely involved in maintaining a constant level of glucose in the bloodstream. Therapies directed at inhibiting PHLPP1 could be used to treat diabetes; in essence, removing the 'brake' and allowing Akt2 to be more functional and allow better insulin regulation. PHLPP2, on the other hand, controls the driver on Akt1, the path involved with cell survival. Therapies directed at releasing the brake on this driver would allow cells involved in heart or neurological diseases to better survive.

"Both PHLPP variants are important in cancer; the loss of a brake to any of the three Akt pathways sends 'go, go, go' signals that promote the survival of tumor cells," said first author John Brognard. UCSD researchers had previously discovered that Akt is hyperactivated, or elevated, in most cancers and PHLPP provides a mechanism to reverse this activation.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Diabetes PHLPP PHLPP2 UCSD neurological variants

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>