Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers discover variants of natural tumor suppressor

11.04.2007
Finding could lead to therapy targets for diabetes, heart disease and cancer

Building on their 2005 discovery of an enzyme that is a natural tumor suppressor, researchers at the University of California, San Diego (UCSD) School of Medicine have now identified two variants of that enzyme which could provide new targets for therapies to treat diabetes, heart and neurological disease. The findings, by Alexandra C. Newton, Ph.D., UCSD professor of pharmacology, and colleagues are published in the current edition of the journal Molecular Cell.

Previous research by Newton's lab, also published in Molecular Cell, described the discovery of an enzyme they named PH domain Leucine-rich repeat Protein Phosphatase (PHLPP, pronounced "flip") that turns off signaling of the Akt/protein kinase B, a protein which controls cell growth, proliferation and survival.

The new work describes a second family member, PHLPP2, which also inactivates Akt, inhibiting the cell cycle progression and promoting cell death. However, PHLPP1 and PHLPP2 control three different disease pathways. While both are important in cancer, PHLPP 1 impacts an important pathway in diabetes and PHLPP2 could be useful in fighting heart and neurological disease.

... more about:
»Diabetes »PHLPP »PHLPP2 »UCSD »neurological »variants

"We first discovered that PHLPP controls Akt, which is the driver on the pathway to tumor growth," said Newton. "PHLPP is like a brake that, when on, slows the driver but when 'off' allows the driver to move. In cancer, we want the driver to brake, to prevent cell proliferation leading to tumor growth. But in diabetes, heart or neurological disease, where we want to promote cell growth and survival, we don't want to slow the driver down."

The researchers have now found that PHLPP1 controls the driver along one pathway – Akt2, which is more closely involved in maintaining a constant level of glucose in the bloodstream. Therapies directed at inhibiting PHLPP1 could be used to treat diabetes; in essence, removing the 'brake' and allowing Akt2 to be more functional and allow better insulin regulation. PHLPP2, on the other hand, controls the driver on Akt1, the path involved with cell survival. Therapies directed at releasing the brake on this driver would allow cells involved in heart or neurological diseases to better survive.

"Both PHLPP variants are important in cancer; the loss of a brake to any of the three Akt pathways sends 'go, go, go' signals that promote the survival of tumor cells," said first author John Brognard. UCSD researchers had previously discovered that Akt is hyperactivated, or elevated, in most cancers and PHLPP provides a mechanism to reverse this activation.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Diabetes PHLPP PHLPP2 UCSD neurological variants

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>