Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists identify protein key to breast cancer spread, potential new drug target

11.04.2007
Researchers at the Kimmel Cancer Center at Jefferson have identified a protein that they say is key to helping a quarter of all breast cancers spread. The finding, reported online the week of April 9, 2007 in the journal Proceedings of the National Academy of Sciences, could be a potential target for new drugs aimed at stopping or slowing the growth and progression of breast cancer.

Kimmel Cancer Center director Richard Pestell, M.D., Ph.D., professor and chair of cancer biology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and colleagues genetically engineered mice to lack the protein Akt1, which normally plays a role in keeping cells alive by interfering with programmed cell death. Breast and other cancers make an overabundance of the protein, and it’s thought to potentially affect survival of breast and other cancer cells as well.

To test that hypothesis, Dr. Pestell and his team bred the mice missing the gene for Akt1 with other mice that overexpressed the HER2-neu (ErbB2) oncogene, which leads to approximately 25 percent of all breast cancers. They then examined the role of Akt in the onset and progression of breast cancer in the resulting offspring.

To their surprise, mice lacking two copies of the gene that produces Akt1 rarely had any tumors. Those mice that carried only one copy of the Akt1 gene developed some tumors, but they were small and developed more slowly. Mice with two copies of Akt1 rapidly developed significant cancer.

... more about:
»AKT1 »Pestell »breast cancer »metastasis

“The finding was exciting because it told us that Akt1 is a potentially useful target for ErbB2-positive breast cancer,” Dr. Pestell says. “More interesting was that even if the mouse developed a tumor, it didn’t develop metastases. We proved that there was a requirement for Akt1 in metastasis, which makes Akt1 an exciting target for metastatic breast cancer. We knew that Akt1 could play a role in cell growth and size, but the idea that it could play a role in migration and metastasis was an unexpected new finding,”

The researchers also proved how, showing that Akt1 causes the cancer cells to secrete a factor – CXCL16 – that promotes breast cancer cell migration. Without Akt, cancer cells failed to migrate. They also showed that deleting Akt1 completely blocked breast cancer metastasis to the lungs, while mice that expressed Akt1 died from lung metastasis.

While scientists have looked at Akt as a drug target, notes Arthur Pardee, Ph.D., professor emeritus of medical oncology at the Dana-Farber Cancer Institute in Boston, its role in metastasis is less emphasized. “Blocking this with anti-Akt drugs might provide a novel treatment, especially against early cancers,” he says.

While the monoclonal antibody drug Herceptin has been very successful in treating ErbB2-positive breast cancer, patients can relapse, Dr. Pestell notes, and other drug targets are needed. The newly found secreted factor may prove to be such a target.

“We’d like to find a way of blocking CXCL16 production and see if it’s true in human breast cancers,” Dr. Pestell says. “Right now we are looking at patients’ samples to see whether this is important in promoting metastatic breast cancer of other types.”

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: AKT1 Pestell breast cancer metastasis

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>