Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists identify protein key to breast cancer spread, potential new drug target

11.04.2007
Researchers at the Kimmel Cancer Center at Jefferson have identified a protein that they say is key to helping a quarter of all breast cancers spread. The finding, reported online the week of April 9, 2007 in the journal Proceedings of the National Academy of Sciences, could be a potential target for new drugs aimed at stopping or slowing the growth and progression of breast cancer.

Kimmel Cancer Center director Richard Pestell, M.D., Ph.D., professor and chair of cancer biology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and colleagues genetically engineered mice to lack the protein Akt1, which normally plays a role in keeping cells alive by interfering with programmed cell death. Breast and other cancers make an overabundance of the protein, and it’s thought to potentially affect survival of breast and other cancer cells as well.

To test that hypothesis, Dr. Pestell and his team bred the mice missing the gene for Akt1 with other mice that overexpressed the HER2-neu (ErbB2) oncogene, which leads to approximately 25 percent of all breast cancers. They then examined the role of Akt in the onset and progression of breast cancer in the resulting offspring.

To their surprise, mice lacking two copies of the gene that produces Akt1 rarely had any tumors. Those mice that carried only one copy of the Akt1 gene developed some tumors, but they were small and developed more slowly. Mice with two copies of Akt1 rapidly developed significant cancer.

... more about:
»AKT1 »Pestell »breast cancer »metastasis

“The finding was exciting because it told us that Akt1 is a potentially useful target for ErbB2-positive breast cancer,” Dr. Pestell says. “More interesting was that even if the mouse developed a tumor, it didn’t develop metastases. We proved that there was a requirement for Akt1 in metastasis, which makes Akt1 an exciting target for metastatic breast cancer. We knew that Akt1 could play a role in cell growth and size, but the idea that it could play a role in migration and metastasis was an unexpected new finding,”

The researchers also proved how, showing that Akt1 causes the cancer cells to secrete a factor – CXCL16 – that promotes breast cancer cell migration. Without Akt, cancer cells failed to migrate. They also showed that deleting Akt1 completely blocked breast cancer metastasis to the lungs, while mice that expressed Akt1 died from lung metastasis.

While scientists have looked at Akt as a drug target, notes Arthur Pardee, Ph.D., professor emeritus of medical oncology at the Dana-Farber Cancer Institute in Boston, its role in metastasis is less emphasized. “Blocking this with anti-Akt drugs might provide a novel treatment, especially against early cancers,” he says.

While the monoclonal antibody drug Herceptin has been very successful in treating ErbB2-positive breast cancer, patients can relapse, Dr. Pestell notes, and other drug targets are needed. The newly found secreted factor may prove to be such a target.

“We’d like to find a way of blocking CXCL16 production and see if it’s true in human breast cancers,” Dr. Pestell says. “Right now we are looking at patients’ samples to see whether this is important in promoting metastatic breast cancer of other types.”

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: AKT1 Pestell breast cancer metastasis

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>