Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do the rules of immunity change during chronic infections?

11.04.2007
New study finds an altered immune response to viruses like HIV and hepatitis C

After a viral infection, a small percentage of the T cells generated to kill virus-infected cells remain on guard to establish long-term immunity. These so-called memory T cells, which derive from a family of immune cells known as CD8 T cells, engage in a self-renewal process that is essential to their persistence. This ongoing process ensures effective protection against any repeat infection by the same virus, even decades later.

But not all infections are equal. While most viral infections are cleared from the body within a few days or weeks, some infections, such as HIV or hepatitis C infections, become chronic. Some studies have suggested that the virus-specific CD8 T cells generated during a chronic infection may not develop the same characteristics as the CD8 T cells that persist after an acute infection.

Now, scientists at The Wistar Institute have found that the CD8 T cells generated to fight a chronic infection operate under an entirely different maintenance scheme than do the CD8 T cells that become memory T cells following an acute infection, becoming wholly dependent upon the presence of virus for their continuation. Details of the study will appear in the April 16 issue of The Journal of Experimental Medicine, published online April 9.

In addition, the CD8 T cells maintained during chronic infections establish a distinct pattern of cell division that creates a rapid turnover of cells, a characteristic that could be manipulated to design new therapeutic options for chronic infections, says E. John Wherry, Ph.D., senior author on the study and an assistant professor in the Immunology Program at Wistar.

"It appears the immune system responds to viral infections with two very different cell types," Wherry says. "In one case, when virus is completely cleared, you have a memory T cell capable of self-renewal. But during chronic infection, you have a totally different type of T cell that is not governed by the same pathways and mechanisms."

Understanding how the body’s immune response operates during chronic infections, and why it fails to clear these infections, could help scientists design more effective therapies to fight chronic infections and certain types of tumors, says Wherry.

In previous studies, Wherry had shown that chronically stimulated CD8 T cells were unable to undergo the slow, steady self-renewal process used by the CD8 T cells that persist as memory T cells after an acute infection. In addition, his studies showed that CD8 T cells associated with chronic infections responded poorly to IL-7 and IL-15, growth factors needed to maintain memory T cells after an acute infection. He theorized that prolonged exposure to the virus might prevent the development of normal memory T cells.

To test his theory, Wherry and his group infected mice with a virus that simulates a chronic infection. The scientists then treated the mice to clear the virus from their systems. When the virus was cleared, the CD8 T cells that had partial function also disappeared. By not going through the normal process of self-renewal, the disappearing T cells left the mice with no long-term immunity.

"The findings suggest that we’re caught in an immunological catch-22 with chronic infections," Wherry says. "The persistence of the virus is inactivating the T cells, yet the T cells are now dependent on the persisting virus for their maintenance."

The study also showed that over a four-week period, the CD8 T cells generated to fight the virus had divided five to six times, yet the number of these T cells remained relatively stable. Wherry says this observation suggests that either a very small subset of the cells are recruited to divide or that the virus-driven division of this T cell population is accompanied by extensive cell death.

Though these questions remain to be answered, the findings have implications for developing treatments for patients with chronic infections, Wherry says. "The results suggest that the rate of proliferation or cell death could perhaps be modulated to alter the size or quality of virus-specific CD8 T cell populations during persisting infections."

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: CD8 T cells Wherry chronic infections viral infection

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>