Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slick and Springy: Brown Research Reveals Protein’s Role in Joints

10.04.2007
Experiments led by Brown University physician and engineer Gregory Jay, M.D., show a new role that the protein lubricin plays in synovial fluid – the slimy stuff jammed in joints. Lubricin, the team found, not only reduces friction but also boosts resiliency in joints. Results of the research, appearing on-line in the Proceedings of the National Academy of Sciences, may lead to new treatments for arthritis.

Synovial fluid is slime with a serious purpose: Protecting shoulders, hips and other joints from wear, reducing the likelihood of injuries and arthritis.

Scientists have long believed that synovial fluid gets its surface-slicking, shock-absorbing properties from the “goo molecule” hyaluronate. But new research led by Brown University physician and engineer Gregory Jay, M.D., shows that the protein lubricin is also a player, not only lubricating cartilage but also giving synovial fluid its spring.

“Protein components like lubricin are just as key as hyaluronate for protecting joints,” Jay said. “What we hope to get out of this knowledge is better treatments for arthritis, one of the most common chronic health problems and the biggest cause of disability in the nation.”

... more about:
»Arthritis »hyaluronate »lubricin »synovial

Jay’s research, published online in the Proceedings of the National Academy of Sciences, is clinically relevant. People with osteoarthritis in their knees can now get viscosupplementation, a medical procedure that involves an injection of hyaluronate directly into knee joints in an effort to reduce pain and improve movement. The new research shows that it might be beneficial to add lubricin into these injectable fluids, Jay said.

“Adding this protein to supplements could restore elasticity in synovial fluid and prevent damage to cartilage inside the joint,” he said. “These supplements could be an effective preventive treatment for arthritis or for sports injuries.”

Jay, a Rhode Island Hospital emergency physician and Brown associate professor of emergency medicine and engineering, has studied joint mechanics for 20 years. His lab spearheaded research into lubricin’s role as a “boundary lubricant” by reducing friction between opposing layers of cartilage inside joints.

In this new work, Jay and his team show how lubricin and hyaluronate work together to give synovial fluid its elastic property. The team found that these molecules act as weaver and wool: Lubricin gathers the long, thin, stiff polymers of hyaluronate together, creating structures that the researchers believe create shock-absorbing structures inside synovial fluid.

To study this molecular interaction, researchers put microscopic, fluorescent beads into two samples of synovial fluid. One sample was normal. The other came from a patient whose body doesn’t produce lubricin. This rare condition, called CACP syndrome, causes premature joint failure, often prompting the need for joint replacement surgeries for patients in their 20s.

Using a camera and a microscope, the research team observed how these beads moved through the fluid. Those movements were measured and – using a theory espoused by Albert Einstein – used to calculate viscosity and elasticity. The result: Synovial fluid that lacked lubricin wasn’t elastic – and wouldn’t be able to protect cartilage.

“Elasticity is distinct from boundary lubrication,” Jay said. “It’s a different protective feature.”

The research team included Kenneth Breuer, professor of engineering at Brown, Jahn Torres, a former engineering graduate student at Brown, Matthew Warman, associate professor in the Departments of Genetics and Pediatrics at Case Western Reserve University School of Medicine, and Matthew Laderer, a former undergraduate student at Brown.

The National Institute of Arthritis and Musculoskeletal Diseases funded the work.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews and maintains an ISDN line for radio interviews. For more information, call the Office of Media Relations at (401) 863-2476.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

Further reports about: Arthritis hyaluronate lubricin synovial

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>