Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slick and Springy: Brown Research Reveals Protein’s Role in Joints

10.04.2007
Experiments led by Brown University physician and engineer Gregory Jay, M.D., show a new role that the protein lubricin plays in synovial fluid – the slimy stuff jammed in joints. Lubricin, the team found, not only reduces friction but also boosts resiliency in joints. Results of the research, appearing on-line in the Proceedings of the National Academy of Sciences, may lead to new treatments for arthritis.

Synovial fluid is slime with a serious purpose: Protecting shoulders, hips and other joints from wear, reducing the likelihood of injuries and arthritis.

Scientists have long believed that synovial fluid gets its surface-slicking, shock-absorbing properties from the “goo molecule” hyaluronate. But new research led by Brown University physician and engineer Gregory Jay, M.D., shows that the protein lubricin is also a player, not only lubricating cartilage but also giving synovial fluid its spring.

“Protein components like lubricin are just as key as hyaluronate for protecting joints,” Jay said. “What we hope to get out of this knowledge is better treatments for arthritis, one of the most common chronic health problems and the biggest cause of disability in the nation.”

... more about:
»Arthritis »hyaluronate »lubricin »synovial

Jay’s research, published online in the Proceedings of the National Academy of Sciences, is clinically relevant. People with osteoarthritis in their knees can now get viscosupplementation, a medical procedure that involves an injection of hyaluronate directly into knee joints in an effort to reduce pain and improve movement. The new research shows that it might be beneficial to add lubricin into these injectable fluids, Jay said.

“Adding this protein to supplements could restore elasticity in synovial fluid and prevent damage to cartilage inside the joint,” he said. “These supplements could be an effective preventive treatment for arthritis or for sports injuries.”

Jay, a Rhode Island Hospital emergency physician and Brown associate professor of emergency medicine and engineering, has studied joint mechanics for 20 years. His lab spearheaded research into lubricin’s role as a “boundary lubricant” by reducing friction between opposing layers of cartilage inside joints.

In this new work, Jay and his team show how lubricin and hyaluronate work together to give synovial fluid its elastic property. The team found that these molecules act as weaver and wool: Lubricin gathers the long, thin, stiff polymers of hyaluronate together, creating structures that the researchers believe create shock-absorbing structures inside synovial fluid.

To study this molecular interaction, researchers put microscopic, fluorescent beads into two samples of synovial fluid. One sample was normal. The other came from a patient whose body doesn’t produce lubricin. This rare condition, called CACP syndrome, causes premature joint failure, often prompting the need for joint replacement surgeries for patients in their 20s.

Using a camera and a microscope, the research team observed how these beads moved through the fluid. Those movements were measured and – using a theory espoused by Albert Einstein – used to calculate viscosity and elasticity. The result: Synovial fluid that lacked lubricin wasn’t elastic – and wouldn’t be able to protect cartilage.

“Elasticity is distinct from boundary lubrication,” Jay said. “It’s a different protective feature.”

The research team included Kenneth Breuer, professor of engineering at Brown, Jahn Torres, a former engineering graduate student at Brown, Matthew Warman, associate professor in the Departments of Genetics and Pediatrics at Case Western Reserve University School of Medicine, and Matthew Laderer, a former undergraduate student at Brown.

The National Institute of Arthritis and Musculoskeletal Diseases funded the work.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews and maintains an ISDN line for radio interviews. For more information, call the Office of Media Relations at (401) 863-2476.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

Further reports about: Arthritis hyaluronate lubricin synovial

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>