Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Need oxygen? Cells know how to spend and save

10.04.2007
Researchers at Johns Hopkins have discovered how cells fine-tune their oxygen use to make do with whatever amount is available at the moment.

Too little oxygen threatens life by compromising mitochondria that power it, so when oxygen is scarce, cells appear to adjust by replacing one protein with an energy-efficient substitute that "is specialized to keep the motor running smoothly even as it begins to run out of gas," says Gregg Semenza, M.D., Ph.D., a professor of pediatrics and director of the vascular biology program in the Institute for Cell Engineering at Hopkins. "This is one way that cells maintain energy production under less than ideal conditions." A report on the work is in the April 6 issue of Cell.

"Cells require a constant supply of oxygen," Semenza says, "so it's vital for them to quickly react to slight changes in oxygen levels." The protein-swap is how they do it.

In the mitochondria, the tiny powerhouses found in every cell, energy is produced by passing electrons through a series of relay stations called cytochromes until they eventually join with oxygen to form water. This final step is directed by the protein cytochrome coxidase, or COX for short. If electrons react with oxygen before reaching COX, they generate "free radicals" that can damage or destroy cells. The mitochondria are designed to produce energy without excess free radical production at normal oxygen levels.

... more about:
»COX4-1 »COX4-2 »Cox »HIF-1 »Hypoxia »mitochondria

Semenza's team noticed that one particular component of the COX protein complex, COX4, comes in two different forms, COX4-1 and COX4-2. Under normal oxygen conditions, the cells' mitochondria contain mostly COX4-1. The researchers suspected that COX 4-2 might be the active protein under stressful, low-oxygen conditions, which the researchers refer to as hypoxia.

To test the idea, the team compared the growth of human cells in normal oxygen conditions (what's generally present in normal room air) compared to cells grown in hypoxia. In low oxygen, liver, uterus, lung and colon cells all made COX4-2. The researchers then exposed mice to hypoxia for a few weeks and found that they too showed increased levels of COX4-2.

In 1992, Semenza's team had discovered a protein which they called HIF-1 (for hypoxia-inducible factor 1) that cells make in response to hypoxia. HIF-1 turns on genes that help cells survive when oxygen is low, such as during a heart attack or stroke. The researchers set out to figure out if the sensor protein HIF-1 triggers the COX-swapping.

By examining the gene control regions of COX4, they found that the HIF-1 sensor switched on COX4-2 activity when oxygen is low. And they learned that because COX4-1 already is in the mitochondria, the swap for COX4-2 occurs when the sensor turns on yet another gene that produces an enzyme to specifically chew up COX4-1. Engineering human cells to lack this enzyme and subjecting them to low oxygen, the scientists found the cells unable to rid themselves of COX4-1.

"It's remarkable that the one-celled yeast also swap COX subunits in response to hypoxia, but because they lack HIF-1, they accomplish the swap in a completely different way," says Semenza. "This suggests that adapting mitochondria to changes in oxygen levels may be a major challenge for most organisms on Earth."

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.cell.com/
http://www.hopkinsmedicine.org/geneticmedicine/index.html

Further reports about: COX4-1 COX4-2 Cox HIF-1 Hypoxia mitochondria

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>