Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project to prolong life of Europe's paper artefacts

10.04.2007
While there is huge interest in preserving great works of archaeological, historical or artistic value, there is no escaping the fact that the oxidation process means all paper-based artefacts will have a limited shelf life and not last forever.

The EU-funded Papertech project has taken up the delicate challenge of finding techniques to prolong the lives of these valuable works. It has developed a triangle of innovations which could become the de facto protocols for the diagnostic, restoration and conservation of paper-based artefacts.

Juan Manuel Madariaga from the University of the Basque Country, one of the partners in the project, told CORDIS News: 'There are three innovations to evolve out of the project which we hope will become protocols the world over for the restoration and conservation of paper based works of cultural value.'

The first of these three innovations developed by the team is a non destructive diagnostic technique to characterise the properties of the paper and measure the level of degradation suffered by paper materials.

... more about:
»Conservation »Restoration »artefact

So, the diagnostic began with known image analysis techniques, including spectroscopic (FT-IR, RAMAN) and X-ray fluorescence (XRF) measurements, as well as an innovative, especially developed mobile Nuclear Magnetic Resonance instrument (NMR MOUSE) for detecting the 'in situ' characteristics of the ancient paper object.

The researchers then turned their attention to restoration and conservation.

They synthesised new specific polymeric materials with excellent photo-oxidative stability and strong adhesive properties for sticking to cellulose substrates. Like new skin covering a wound, these polymers were grafted onto the cellulose substrate to form a second stable layer which would improve the degraded paper.

This innovative technique serves the two functions of both stopping the degradation of the artefact object and restoring it to a clean bill of health.

Finally, the researchers wrapped up their restoration research by developing a new cleaning technology using laser beams to preserve the state and quality of the newly restored works of art.

Dr Madariaga said: 'The project is proving to be a real success. We have received praise from the European Commission and expectations are running high. Now we have to test and evaluate the innovative processes of conservation before we can proceed to patenting our innovations.'

The evaluation process will involve submitting the sample model materials and technologies to strong photoxidative, chemical and biological attacks to test their stability. If these satisfy standards of efficiency and durability, only then will the materials and technologies be tested further on selected ancient paper items.

These items will then be organised into an exhibition to showcase the methods used to solve different conservation problems.

If successful, the project could result in countless works of historical and cultural value being finally allowed out of storage and onto the walls of museums around the world for people to enjoy.

The Papertech project is funded by the EU's Sixth Framework Programme (FP6) and includes partners from such Mediterranean countries as Italy, Spain, France, Portugal, Morocco, Jordan and Egypt.

Virginia Mercouri | alfa
Further information:
http://cordis.europa.eu/news

Further reports about: Conservation Restoration artefact

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>