Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of symbiosis

10.04.2007
The aphid Acyrthosiphon pisum depends on a bacterial symbiont, Buchnera aphidicola, for amino acids it can’t get from plants. The aphid, in turn, provides the bacterium with energy and carbon as well as shelter inside specialized cells.

Such interdependent relationships are not unusual in the natural world. What is unusual, report Helen Dunbar, Nancy Moran, and colleagues in a new study published this week in the open access journal PLoS Biology, is that a single point mutation in Buchnera’s genome can have consequences for its aphid partner that are sometimes detrimental, and sometimes beneficial.

The authors probe Buchnera’s and A. pisum’s ability to tolerate heat. When exposed to high temperatures, Buchnera is supposed to activate special “heat-shock” genes whose products help to protect proteins from heat-related degradation. By using microarrays to assess activity of A. pisum and Buchnera genes, the researchers discovered that after a four-hour exposure to 35 °C temperature, some of their laboratory strains of Buchnera upregulated the heat-shock genes, but others did not. Further analysis showed the genetic basis for the difference: a single missing nucleotide in an adenine-filled stretch of DNA, called a promoter, that’s involved in activating the heat-shock gene. Testing at a range of temperatures from 15 °C to 35 °C showed that activation of the heat-shock gene was consistently lower in the lines with the missing nucleotide than in the normal bacteria.

What does this mean for A. pisum’s ability to tolerate tough conditions? To answer that, the researchers asked whether exposing juvenile aphid hosts of Buchnera with either long or short promoters to four hours of high temperatures (35 or 38 °C) affected their ability to reproduce. They found that few of the aphids with bacteria bearing short promoters reproduced after the heat treatment, while those with bacteria bearing the longer promoters had no trouble. In addition, aphids that had been exposed to the high temperatures and had the short-promoter-bearing bacteria weighed less as adults and had far fewer Buchnera inside them than did their counterparts with long-promoter-bearing bacteria.

... more about:
»Buchnera »Mutation »aphid »heat-shock »symbiont

Given these seemingly huge disadvantages to dropping a single adenine, it’s hard to believe the mutation could last long in a Buchnera population. Yet, by sequencing and comparing the Buchnera associated with various A. pisum lines, the researchers discovered that the short-promoter option had arisen and been fixed twice in laboratory stock and was also found at frequencies of 21% and 13%, respectively, in bacteria in field-collected aphids from Wisconsin and New York.

Population genetic theory predicts that when a mutation is maintained in a population at high frequencies, it likely confers some benefit to its bearer. What could be the advantage of carrying a gene that causes one to lose the ability to reproduce at high temperatures?

A clue to the answer comes from the wild populations in which the mutation was not found: those living in Arizona and Utah. Could the bacterial mutation confer a competitive advantage that’s only relevant in cooler climates? To find that out, the researchers performed a second test using a range of four-hour exposure temperatures. They discovered that short-promoter bacteria-bearing aphids produced progeny faster than did the normal ones when raised at 15 °C or 20 °C. Thus, though aphids containing bacterial symbionts with the heat-shock-promoter mutation fare worse than normal aphids after exposure to high temperatures, they do better under cool conditions, giving the mutation a selective advantage that causes it to be maintained in the population.

In addition to their explorations of A. pisum and its Buchnera, Moran’s team also looked for and found multiple-adenine stretches related to heat-shock genes in Buchnera symbiotic with other aphid species. This offers fertile ground for further study of the intriguing interplay among aphids, bacteria, and temperature.

Citation: Dunbar HE, Wilson ACC, Ferguson NR, Moran NA (2007) Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol 5(5): e96. doi:10.1371/journal.pbio.0050096.

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050096

Further reports about: Buchnera Mutation aphid heat-shock symbiont

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>