Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stop signs: Study identifies 'braking' mechanism in the brain

05.04.2007
As wise as the counsel to "finish what you've started" may be, it is also sometimes critically important to do just the opposite -- stop. And the ability to stop quickly, to either keep from gunning the gas when a pedestrian steps into your path or to bite your tongue mid-sentence when the subject of gossip suddenly comes into view, may depend on a few "cables" in the brain.

Researchers led by cognitive neuroscientist Adam Aron, an assistant professor of psychology at the University of California, San Diego, have found white matter tracts -- bundles of neurons, or "cables," forming direct, high-speed connections, between distant regions of the brain -- that appear to play a significant role in the rapid control of behavior.

Published in the April 4 issue of the Journal of Neuroscience, the study is the first to identify these white matter tracts in humans, confirming similar findings in monkeys, and the first to relate them to the brain's activity while people voluntarily control their movements.

"Our results provide important information about the correspondence between the anatomy and the activity of control circuits in the brain," Aron said. "We've known for some time about key brain areas involved in controlling behavior and now we're learning how they're connected and how it is that the information can get from one place to the other really fast."

... more about:
»Brain »movement »subject

"The findings could be useful not only for understanding movement control," Aron said, "but also 'self-control' and how control functions are affected in a range of neuropsychiatric conditions such as addiction, Tourette's syndrome, stuttering and Attention Deficit Hyperactivity Disorder."

To reveal the network, Aron and researchers from UCLA, Oxford University and the University of Arizona performed two types of neuroimaging scan on healthy volunteers.

They used diffusion-weighted MRI, in 10 subjects, to demonstrate the "cables" between distant regions of the brain known to be important for control, and they used functional MRI, in 15 other subjects, to show that these same regions were activated when participants stopped their responses on a simple computerized "go-stop" task.

One of the connected regions was the subthalamic nucleus, within the deep-seated midbrain, which is an interface with the motor system and can be considered a "stop button" or the brake itself. A second region was in the right inferior frontal cortex, a region near the temple, where the control signal to put on the brakes probably comes from.

"This begs the profound question," Aron said, "of where and how the decision to execute control arises."

While this remains a mystery, Aron noted that an additional, intriguing finding of the study was that the third connected node in the network was the presupplementary motor area, which is at the top of the head, near the front. Prior research has implicated this area in sequencing and imagining movements, as well as monitoring for changes in the environment that might conflict with intended actions.

The braking network for movements may also be important for the control of our thoughts and emotions.

There is some evidence for this, Aron said, in the example of Parkinson's patients. In the advanced stages of disease, people can be completely frozen in their movements, because, it seems, their subthalamic nucleus, or stop button, is always "on." While electrode treatment of the area unfreezes the patients' motor system, it can also have the curious effect of disinhibiting them in other ways. In one case, an upstanding family man became manic and hypersexual, and suddenly began stealing money from his wife to pay for prostitutes.

Examples like these motivate Aron to investigate the generality of the braking mechanism.

"The study gives us new targets for studying how the brain relates to behavior, personality and genetics," Aron said. "Variability in the density and thickness of the 'cable' connections is probably influenced by genes, and it would be intriguing if these differences explained people's differing abilities not only to control the swing of a bat but also to control their temper."

Inga Kiderra | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Brain movement subject

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>