Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA identifies new molecule involved in the body's processing of dietary fat

04.04.2007
UCLA investigators have identified a new molecule that may help regulate the delivery of fats to cells for energy and storage.

Published in the April issue of the journal Cell Metabolism, the finding could lead to a better understanding of how we utilize fats from the foods we eat.

"We thought that we had figured out how the body digests and uses fats, but we have identified a completely new player in the game," said the study's author Anne Beigneux, assistant investigator at the David Geffen School of Medicine at UCLA.

Digested fats travel to the small intestine, where they are packaged into chylomicrons, which are large, spherical particles filled with triglycerides.

Chylomicrons then travel through the bloodstream and deliver triglycerides to the skeletal muscles and heart — tissues that are hungry for fuel — or to adipose tissue for energy storage. Molecules called proteoglycans, attached to the inside walls of capillaries, wait like baseball players with their mitts open, poised to catch the passing chylomicrons.

Proteoglycans hold the chylomicrons steady while the triglycerides are broken down or hydrolyzed by the enzyme lipoprotein lipase (LpL). The triglyceride breakdown products are then taken up and used by cells.

"Previously we didn't know what molecule in the capillaries facilitated the capture of chylomicrons and facilitated the interaction with lipoprotein lipase," said Dr. Stephen Young, study author and investigator at the David Geffen School of Medicine at UCLA. "We think that we've found the missing piece of the puzzle."

Investigators discovered that a protein called glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) may be the missing link.

Scientists found that mice deficient in GPIHBP1 develop very high triglyceride levels, even on a normal diet, demonstrating that fats in the bloodstream are not readily metabolized in the absence of GPIHBP1.

Laboratory tests confirmed that GPIHBP1-deficient mice had much higher levels of chylomicrons in the bloodstream than normal mice. The GPIHBP1-deficient mice had grossly milky plasma, reflecting very large amounts of triglycerides in the blood.

"These findings indicate a defect in the breakdown of chylomicrons in mice that don't have GPIHBP1," Beigneux said.

Investigators predicted that if GPIHBP1 were involved in the processing of chylomicrons in the bloodstream, then the protein would be made by endothelial cells of capillaries, where the breakdown of triglycerides takes place. Indeed, microscopy showed that GPIHBP1 is expressed highly and exclusively on the endothelial cells of capillaries of heart, adipose tissue and skeletal muscle.

Interestingly, scientists found that this protein was absent from the brain, which mainly uses glucose for energy.

"These differences suggest that endothelial cells may play an active role in regulating the delivery of lipid nutrients to different tissues," Beigneux said.

Experiments with cultured cells revealed that GPIHBP1 binds both chylomicrons and lipoprotein lipase, suggesting GPIHBP1 is a key platform for the processing of chylomicrons.

The next step, according to investigators, will be to determine if GPIHBP1 provides the only binding site for chylomicrons and lipoprotein lipase within capillaries. In addition, investigators would like to define the molecular basis for how GPIHBP1 binds to chylomicron particles.

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

Further reports about: GPIHBP1 Lipase Triglyceride UCLA capillaries chylomicron endothelial cell lipoprotein

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>