Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser Goes Tubing for Faster Body-Fluid Tests

University of Rochester researchers announce in the current issue of Applied Optics a technique that in 60 seconds or less measures multiple chemicals in body fluids, using a laser, white light, and a reflective tube.

The technique tests urine and blood serum for common chemicals important to monitoring and treatment of diabetes and cardiovascular, kidney, urinary and other diseases, and lends itself to the development of fast batch testing in hospitals and other clinical settings.

Co-researchers Andrew J. Berger, associate professor of optics, and Dahu Qi, doctoral candidate, used low-refractive-index tubes instead of cuvettes or other bulky containers for holding biological specimens. And, to get more information from the fluids, they used white light—like that from an ordinary light bulb—along with the laser. The tubes and light bulbs made all the difference.

In the laser technique called Raman spectroscopy, scientists shine laser light onto molecules and the light scatters off, gaining or losing energy. A spectrograph translates the changed energies into spectra. Each chemical presents a Raman spectrum that scientists recognize. The Raman approach is a favorite for finding chemicals that overlap and mix in fluid, much like musical instruments in an orchestra. But Raman spectroscopy comes with a problem.

... more about:
»Raman »Serum »concentration »sample »technique

Raman signal is notoriously weak. Using it to test biofluids, with their lighter chemical concentrations than in many fluids, is not a natural choice. Berger and Qi injected fluid samples into a thin transparent tube specially made to contain the light, and the tube's long path length of interaction let the scientists collect more Raman scattering. "The tubes have a refractive index lower than water, so the light bounces along inside the liquid core, just as in solid optical fibers for telecommunications," said Berger. "Other groups had used these fibers to strengthen their Raman signals, so we wanted to see if we could translate that advantage to use with biofluids."

They did get the stronger signal they were looking for, but the increase threw off measurements when samples of urine or blood serum varied in color.

In previous experiments, Berger and his team had explored how a concentration of each chemical relates to the strength of Raman signal. It turned out the relationship is not a simple linear one. They were able to use that information for dealing with differences in sample color.

"We can't neglect that body fluid samples absorb light," said Berger. "We'd have two different samples with the same amount of protein and not get the same strength of signal. If we had two samples of blood serum, maybe one sample would be a little pinker due to a few ruptured red blood cells. Then we wouldn't get the same signal strength."

The solution flashed like a light bulb. The scientists sent a beam of white light through each sample to see how much light was absorbed at various wavelengths, and then they calculated corrections. It was easy enough to inject the light by using the end of the tube opposite the laser. The resulting corrections made chemical predictions significantly more accurate.

The team measured 11 chemicals in blood serum, including total protein, cholesterol, LDL and HDL levels, glucose, triglyceride, albumin, bilirubin, blood urea nitrogen, globulin, and CO2. In urine, they identified urea nitrogen and creatinine. The technique does not measure ions such as calcium or sodium, or other chemicals present at concentrations below about 0.01 mg/mL.

Spectral tests use no chemical reagents and therefore offer the advantage of being nondestructive to fluid samples, unlike many lab tests. After analysis, practitioners could use undamaged samples for other kinds of tests.

"We squeeze a small amount of fluid into the tube," said Berger. "In 10 or 20 seconds, we have a chemical breakdown, and we can see the presence of a lot of chemicals all at once. There's no chemistry performed, and there's no touching of the fluid."

The tubing doesn't just help with the signal strength; it also makes it easy to move biofluids around. "We pump a sample into the tube, pass some light through it, and send it along its way—and then we're all set to pump in the next one," said Berger.

Robert Mooney, professor of pathology and laboratory medicine, collaborated in planning the experiments and arranged for serum and urine specimens from the University of Rochester Medical Center. The Whitaker Foundation provided funding for the research.

Jennifer Wettlaufer | EurekAlert!
Further information:

Further reports about: Raman Serum concentration sample technique

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>