Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Goes Tubing for Faster Body-Fluid Tests

04.04.2007
University of Rochester researchers announce in the current issue of Applied Optics a technique that in 60 seconds or less measures multiple chemicals in body fluids, using a laser, white light, and a reflective tube.

The technique tests urine and blood serum for common chemicals important to monitoring and treatment of diabetes and cardiovascular, kidney, urinary and other diseases, and lends itself to the development of fast batch testing in hospitals and other clinical settings.

Co-researchers Andrew J. Berger, associate professor of optics, and Dahu Qi, doctoral candidate, used low-refractive-index tubes instead of cuvettes or other bulky containers for holding biological specimens. And, to get more information from the fluids, they used white light—like that from an ordinary light bulb—along with the laser. The tubes and light bulbs made all the difference.

In the laser technique called Raman spectroscopy, scientists shine laser light onto molecules and the light scatters off, gaining or losing energy. A spectrograph translates the changed energies into spectra. Each chemical presents a Raman spectrum that scientists recognize. The Raman approach is a favorite for finding chemicals that overlap and mix in fluid, much like musical instruments in an orchestra. But Raman spectroscopy comes with a problem.

... more about:
»Raman »Serum »concentration »sample »technique

Raman signal is notoriously weak. Using it to test biofluids, with their lighter chemical concentrations than in many fluids, is not a natural choice. Berger and Qi injected fluid samples into a thin transparent tube specially made to contain the light, and the tube's long path length of interaction let the scientists collect more Raman scattering. "The tubes have a refractive index lower than water, so the light bounces along inside the liquid core, just as in solid optical fibers for telecommunications," said Berger. "Other groups had used these fibers to strengthen their Raman signals, so we wanted to see if we could translate that advantage to use with biofluids."

They did get the stronger signal they were looking for, but the increase threw off measurements when samples of urine or blood serum varied in color.

In previous experiments, Berger and his team had explored how a concentration of each chemical relates to the strength of Raman signal. It turned out the relationship is not a simple linear one. They were able to use that information for dealing with differences in sample color.

"We can't neglect that body fluid samples absorb light," said Berger. "We'd have two different samples with the same amount of protein and not get the same strength of signal. If we had two samples of blood serum, maybe one sample would be a little pinker due to a few ruptured red blood cells. Then we wouldn't get the same signal strength."

The solution flashed like a light bulb. The scientists sent a beam of white light through each sample to see how much light was absorbed at various wavelengths, and then they calculated corrections. It was easy enough to inject the light by using the end of the tube opposite the laser. The resulting corrections made chemical predictions significantly more accurate.

The team measured 11 chemicals in blood serum, including total protein, cholesterol, LDL and HDL levels, glucose, triglyceride, albumin, bilirubin, blood urea nitrogen, globulin, and CO2. In urine, they identified urea nitrogen and creatinine. The technique does not measure ions such as calcium or sodium, or other chemicals present at concentrations below about 0.01 mg/mL.

Spectral tests use no chemical reagents and therefore offer the advantage of being nondestructive to fluid samples, unlike many lab tests. After analysis, practitioners could use undamaged samples for other kinds of tests.

"We squeeze a small amount of fluid into the tube," said Berger. "In 10 or 20 seconds, we have a chemical breakdown, and we can see the presence of a lot of chemicals all at once. There's no chemistry performed, and there's no touching of the fluid."

The tubing doesn't just help with the signal strength; it also makes it easy to move biofluids around. "We pump a sample into the tube, pass some light through it, and send it along its way—and then we're all set to pump in the next one," said Berger.

Robert Mooney, professor of pathology and laboratory medicine, collaborated in planning the experiments and arranged for serum and urine specimens from the University of Rochester Medical Center. The Whitaker Foundation provided funding for the research.

Jennifer Wettlaufer | EurekAlert!
Further information:
http://www.rochester.edu

Further reports about: Raman Serum concentration sample technique

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>