Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flies don’t buzz about aimlessly!

04.04.2007
The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

How you ever stopped to wonder how a fruit fly is able to locate and blissfully drown in your wine glass on a warm summer evening, especially since its flight path seems to be so erratic? Mark Frye at the University of California and Andy Reynolds at Rothamsted Research in the United Kingdom have been pondering this very question.

Fruit flies explore their environment using a series of straight flight paths punctuated by rapid 90° body-saccades. Some of these manoeuvres avoid obstacles in their path. But many others seem to appear spontaneously. Are the spontaneous flight paths really random, do they serve any real purpose?

Armed with a computer video tracking system and an array of mathematical techniques the two researchers have revealed how the flight patterns of starved fruit flies constitute an optimal scale-free searching strategy – like the fractal patterns of a snowflake, a fly flight path appears similar whether viewed up close, or from a distance.

... more about:
»PLoS »searching

The researchers also found that searching is intermittent, such that flies actively search by making tight turns, and fly straight some distance to begin searching again. Scale-free movement patterns have been found in diverse animals including zooplankton, wandering albatrosses, jackals, and even human hunter-gathers. Intermittent searchers include octopi, graylings, and mating crickets.

Andy Reynolds says, “Our results with freely flying Drosophila appear to be the first reported example of searching behaviour that is both scale-free and intermittent. This suggests that these behaviours are not part of two different searching strategies, but rather represent a single very effective and perhaps widely adopted strategy.” Mark Frye believes, “This result is particularly exciting because it suggests a unified theory for one of the most critical behaviour animals exhibit – foraging for food.”

The next step will be toward integrating these results with the neurobiology of fly flight to better understand how these tiny animals are so successful at crashing our dinner parties. The research will appear in the April 4th issue of the international, peer-reviewed, open-access online journal PLoS ONE.

Contact:
Mark Frye
frye@physci.ucla.edu
Andy Reynolds
andy.reynolds@bbsrc.ac.uk
Senior Media Relations Representative UCLA
Stuart Wolpert
(310) 206-0511
swolpert@support.ucla.edu
Rothamsted Press Office
+44 (0)1582 763133
elspeth.bartlet@bbsrc.ac.uk
Citation: Reynolds AM, Frye MA (2007) Free-Flight Odor Tracking in Drosophila Is Consistent with an Optimal Intermittent Scale-Free Search. PLoS ONE 2(4): e354. doi:10.1371/journal.pone.0000354

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000354

Further reports about: PLoS searching

More articles from Life Sciences:

nachricht Algae: The final frontier
22.06.2017 | Carnegie Institution for Science

nachricht Flipping the switch to stop tumor development
22.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>