Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flies don’t buzz about aimlessly!

04.04.2007
The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

How you ever stopped to wonder how a fruit fly is able to locate and blissfully drown in your wine glass on a warm summer evening, especially since its flight path seems to be so erratic? Mark Frye at the University of California and Andy Reynolds at Rothamsted Research in the United Kingdom have been pondering this very question.

Fruit flies explore their environment using a series of straight flight paths punctuated by rapid 90° body-saccades. Some of these manoeuvres avoid obstacles in their path. But many others seem to appear spontaneously. Are the spontaneous flight paths really random, do they serve any real purpose?

Armed with a computer video tracking system and an array of mathematical techniques the two researchers have revealed how the flight patterns of starved fruit flies constitute an optimal scale-free searching strategy – like the fractal patterns of a snowflake, a fly flight path appears similar whether viewed up close, or from a distance.

... more about:
»PLoS »searching

The researchers also found that searching is intermittent, such that flies actively search by making tight turns, and fly straight some distance to begin searching again. Scale-free movement patterns have been found in diverse animals including zooplankton, wandering albatrosses, jackals, and even human hunter-gathers. Intermittent searchers include octopi, graylings, and mating crickets.

Andy Reynolds says, “Our results with freely flying Drosophila appear to be the first reported example of searching behaviour that is both scale-free and intermittent. This suggests that these behaviours are not part of two different searching strategies, but rather represent a single very effective and perhaps widely adopted strategy.” Mark Frye believes, “This result is particularly exciting because it suggests a unified theory for one of the most critical behaviour animals exhibit – foraging for food.”

The next step will be toward integrating these results with the neurobiology of fly flight to better understand how these tiny animals are so successful at crashing our dinner parties. The research will appear in the April 4th issue of the international, peer-reviewed, open-access online journal PLoS ONE.

Contact:
Mark Frye
frye@physci.ucla.edu
Andy Reynolds
andy.reynolds@bbsrc.ac.uk
Senior Media Relations Representative UCLA
Stuart Wolpert
(310) 206-0511
swolpert@support.ucla.edu
Rothamsted Press Office
+44 (0)1582 763133
elspeth.bartlet@bbsrc.ac.uk
Citation: Reynolds AM, Frye MA (2007) Free-Flight Odor Tracking in Drosophila Is Consistent with an Optimal Intermittent Scale-Free Search. PLoS ONE 2(4): e354. doi:10.1371/journal.pone.0000354

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000354

Further reports about: PLoS searching

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>