Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-lasting paper documents

03.04.2007
Although there be great historical, artistic or archaeological interest in preserving them, paper documents have a limited life. Prolonging this life is the goal of the European Papertech project.

Taking part in the consortium carrying out the project, besides laboratories from Italy, France, Portugal, Morocco, Jordan and Egypt, is the University of the Basque Country (UPV/EHU) through the multidisciplinary Consolidated Group made up of the Environmental Analytic Chemistry Group of the Science and Technology Faculty and the Restoration team of old documents at the Fine Art Faculty.

The project has three basic goals. The first is the diagnosis of the state of conservation of the old paper documents of archaeological, historical and artistic value. The second is conservation using classical methods analysing, above all, biological-type degradation processes that occur on cellulose media. The final goal is to test a new technology to reconstruct what has been lost from the cellulose-based paper medium.

When paper degrades due to chemical action it is basically because of oxidation of the cellulose of which the paper is composed. This reaction throws up a series of functional groups on which the new technology can act. As a result, a new polymeric structure amongst these degraded functional groups is formed and a series of materials that are introduced into the paper. This occurs in such a way that it forms a second coating with very similar properties to the original cellulose, but more stable. It is like new skin covering a wound.

... more about:
»Cellulose »UPV/EHU »aglutinant »documents

From papyri to more modern papers

The part of the research undertaken by the UPV/EHU focuses on the analysis of the paper material, i.e. on the samples from different periods and locations, from papyri to ancient maps, official papers, newspapers from the end of the XVIII century, painted paper, and so on.

They have perfected methods for characterising these papers and what is printed/written on them. Moreover, they have been able to define and measure the processes of degradation suffered by the paper material. Currently, they are analysing to see if the new processes of conservation are really effective or not.

To carry out the analysis, the UPV/EHU researchers do no touch the samples. They employ a series of non-destructive techniques that enable analyses to be carried out without damaging the samples. The process is always similar, independently of the nature of the sample; the samples pass through the same equipment.

Three kinds of equipment

The first is the Raman portable spectrometer with a microprobe and which is equipped with a micro-videocamera to focus the laser beam on what is to be analysed, being capable of resolving to 10 micras and obtaining the corresponding spectrum. The idea is to ascertain the molecular form of the various, fundamentally inorganic compounds, in the sample of paper.

Molecular-level information is obtained with this apparatus, but with X-Ray microfluorescence the aim is to obtain an analysis of the elements in order to identify the composition of the products of the medium being analysed, thus differentiating between the original components and those extra ones that have come in to the system through some activity caused by external contamination.

Finally, an optical microscope is fitted to a micro-FTIR, in order to “see” the molecular shapes of the organic compounds. Fundamentally, the degradation suffered by the cellulose medium is verified and the nature of the aglutinants used in the writing inks or the different pigments to colour the work are analysed. Obtaining the infrared sample completes the information obtained by the other two techniques.

Once the complete information from the three techniques is obtained, the results are interpreted. To date, new methodologies on how to treat these delicate materials have been proposed. At the same time, they have made advances in the identification of the aglutinants used in inks and pigments – no easy task, by any means. We can say that the great advantage with respect to other older methods is that the damage to the sample is non-existent or minimal. Given that the UPV/EHU researchers use the infrared spectroscopic technique, which is highly sensitive with less than 0.2 milligrams of sample thickness, they can ascertain the family of aglutinants used. Knowing precisely the aglutinant used 600 years has been practically impossible until now.

Working at this microscopic scale enables identification of materials that perhaps might never have been imagined as degradation products. The problem is usually one of interpreting how these materials came to be in or on the original material. This work is undertaken applying a thorough knowledge of the impact produced by the environment or by micro-organisms and by the chemical reactivity through the use of suitable programmes of chemical balance simulation in heterogeneous phases.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1263

Further reports about: Cellulose UPV/EHU aglutinant documents

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>