Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover workings of bacterial invisibility cloak

02.04.2007
Scientists have uncovered the workings of a method bacteria responsible for diseases such as meningitis and blood disorders use to hide from the body's immune system.

An international research team led by scientists from the University of St Andrews has discovered how bacteria are able to cover their surface under a cloak of carbohydrate molecules to prevent being detected and targeted. Bacteria use a newly discovered protein that allows them to transport a cloak of carbohydrates from inside the bacterial cell that makes them invisible to the immune system.

The research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), raises the possibility that new drugs could be developed to disrupt the cloak and allow the immune system to attack the bacteria.

The bacteria's outer membrane is oil-based so it forms an effective barrier between the water-based interior and exterior of the cell. The research team has discovered that the bacterium safely transports the carbohydrates through the membrane using a previously unknown protein called Wza. The hollow inner part of the Wza protein creates a tunnel for the carbohydrates to pass through the cell membrane. While the protein is open to the cell's exterior, it is closed at the interior end and only opens to let the molecules through.

... more about:
»Carbohydrate »Cloak »immune »workings

"Wza's shape and position in the cell membrane allows the bacterium to perform a very difficult trick", says Professor James Naismith of the Centre for Biomolecular Sciences at the University of St Andrews. "It acts much like an airlock. Wza allows the carbohydrate from inside the cell to cross the outer membrane without creating a hole that could cause the cell contents to leak out. It forms a 'protein tunnel' and plays a key role in allowing bacteria to invade the body under the radar of the immune system."

Moving forward drugs could be developed to block carbohydrates from passing through the membrane, or prevent the protein tunnel from closing again.

Professor Julia Goodfellow, BBSRC Chief Executive, said:
"Research in basic biology underpins future healthcare and medical improvements. Only by investing in such research can we uncover the detailed workings of complex biological systems and generate the knowledge we need to make real progress in combating disease."

Press Office | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Carbohydrate Cloak immune workings

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>