Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Setting sights on the drugs of the future

29.03.2007
Researchers at The University of Nottingham have joined forces with one of the world’s leading pharmaceutical companies, AstraZeneca, to single out potential medicines of the future.

In a unique collaboration between academia and the pharmaceutical industry, teams of experts from both sides gathered together at an ‘ideas generation’ event, designed specifically to identify new areas for research into treatments that can be targeted at cancer, arthritis, cardio-pulmonary disease and other conditions.

The partnership underlines the significance of the EPSRC (Engineering and Physical Sciences Research Council)/AstraZeneca Doctoral Training Centre at the University, set up in 2006 as a direct collaboration with an industry partner to help develop pioneering treatments based on ‘targeted therapeutics’ — regarded as one of the significant future areas in 21st century medicine and in which The University of Nottingham is a UK leader.

The principle behind targeted therapeutics is to send medicines to the parts of the body where they are most needed, at the right time and in the right dose. In this way, diseased sites can be attacked directly, while healthy cells are bypassed, increasing the efficacy of the treatment and reducing side effects.

The University’s £2.5 million EPSRC/AstraZeneca Doctoral Training Centre is training 25 of the UK’s most promising pharmacy PhD students over the next five years in targeted therapeutics. Some of these PhD projects will now focus on ideas generated by the recent ‘ideas generation’ event with AstraZeneca. The ideas which came out of the day-and-a-half meeting, focused on a range of topics including chemistry of new drug delivery systems, biophysical analysis of dosage forms, process analytical technologies and cellular transport of drugs and drug carriers.

Dr Amanda Zeffman, Project Officer, said that the event was one of the first such meetings to take place between academics and scientists from industry.

Dr Zeffman said: “The intention was to generate ideas for PhD projects within the Doctoral Training Centre as well as to encourage general discussion in a relaxed environment, and it was extremely successful.

“By bringing together academics from the Schools of Chemistry, Maths, Computer Science and Physics, with PARD (Pharmaceutical and Analytical Research and Development) and discovery teams from AstraZeneca, we are able to combine the best of academia and industry to establish mutual interests and get a unique perspective on key areas in targeted therapeutics.”

EPSRC's first Doctoral Training Centres were launched in 2002 by EPSRC's Life Sciences Interface Programme. They offer a multi-disciplinary approach to postgraduate training bridging the gap between the medical, biological and physical sciences.

In the Nottingham Doctoral Training Centre, during the initial year of the four-year PhD, students will receive a thorough grounding in pharmaceutical sciences and will spend the first six months completing three, eight-week training projects, of which one is based within AstraZeneca. Each rotation will be in a different research group to enable students to benefit fully from the breadth of research being conducted in the School and by AstraZeneca.

The remaining three years of their time at the centre will be spent working on research projects centred on the theme of targeted therapeutics and drawing on everything from pharmaceutical nanotechnology and biopharmaceuticals to advanced physical, mathematical and life sciences.

AstraZeneca is a global leader in six major areas of healthcare — cardiovascular, gastrointestinal, infection, neuroscience, oncology and respiratory and inflammation — and the partnership with the company will provide a key commercial and clinical focus for the centre. It will improve the prospects of the students gaining jobs within the pharmaceutical industry after completing their training.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk/public-affairs/press-releases/index.phtml?menu=pressreleases&code=SETT-45/07&create_date=21-mar-2007

Further reports about: AstraZeneca Doctoral PhD Pharmaceutical Therapeutics targeted

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>