Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Setting sights on the drugs of the future

29.03.2007
Researchers at The University of Nottingham have joined forces with one of the world’s leading pharmaceutical companies, AstraZeneca, to single out potential medicines of the future.

In a unique collaboration between academia and the pharmaceutical industry, teams of experts from both sides gathered together at an ‘ideas generation’ event, designed specifically to identify new areas for research into treatments that can be targeted at cancer, arthritis, cardio-pulmonary disease and other conditions.

The partnership underlines the significance of the EPSRC (Engineering and Physical Sciences Research Council)/AstraZeneca Doctoral Training Centre at the University, set up in 2006 as a direct collaboration with an industry partner to help develop pioneering treatments based on ‘targeted therapeutics’ — regarded as one of the significant future areas in 21st century medicine and in which The University of Nottingham is a UK leader.

The principle behind targeted therapeutics is to send medicines to the parts of the body where they are most needed, at the right time and in the right dose. In this way, diseased sites can be attacked directly, while healthy cells are bypassed, increasing the efficacy of the treatment and reducing side effects.

The University’s £2.5 million EPSRC/AstraZeneca Doctoral Training Centre is training 25 of the UK’s most promising pharmacy PhD students over the next five years in targeted therapeutics. Some of these PhD projects will now focus on ideas generated by the recent ‘ideas generation’ event with AstraZeneca. The ideas which came out of the day-and-a-half meeting, focused on a range of topics including chemistry of new drug delivery systems, biophysical analysis of dosage forms, process analytical technologies and cellular transport of drugs and drug carriers.

Dr Amanda Zeffman, Project Officer, said that the event was one of the first such meetings to take place between academics and scientists from industry.

Dr Zeffman said: “The intention was to generate ideas for PhD projects within the Doctoral Training Centre as well as to encourage general discussion in a relaxed environment, and it was extremely successful.

“By bringing together academics from the Schools of Chemistry, Maths, Computer Science and Physics, with PARD (Pharmaceutical and Analytical Research and Development) and discovery teams from AstraZeneca, we are able to combine the best of academia and industry to establish mutual interests and get a unique perspective on key areas in targeted therapeutics.”

EPSRC's first Doctoral Training Centres were launched in 2002 by EPSRC's Life Sciences Interface Programme. They offer a multi-disciplinary approach to postgraduate training bridging the gap between the medical, biological and physical sciences.

In the Nottingham Doctoral Training Centre, during the initial year of the four-year PhD, students will receive a thorough grounding in pharmaceutical sciences and will spend the first six months completing three, eight-week training projects, of which one is based within AstraZeneca. Each rotation will be in a different research group to enable students to benefit fully from the breadth of research being conducted in the School and by AstraZeneca.

The remaining three years of their time at the centre will be spent working on research projects centred on the theme of targeted therapeutics and drawing on everything from pharmaceutical nanotechnology and biopharmaceuticals to advanced physical, mathematical and life sciences.

AstraZeneca is a global leader in six major areas of healthcare — cardiovascular, gastrointestinal, infection, neuroscience, oncology and respiratory and inflammation — and the partnership with the company will provide a key commercial and clinical focus for the centre. It will improve the prospects of the students gaining jobs within the pharmaceutical industry after completing their training.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk/public-affairs/press-releases/index.phtml?menu=pressreleases&code=SETT-45/07&create_date=21-mar-2007

Further reports about: AstraZeneca Doctoral PhD Pharmaceutical Therapeutics targeted

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>