Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Setting sights on the drugs of the future

29.03.2007
Researchers at The University of Nottingham have joined forces with one of the world’s leading pharmaceutical companies, AstraZeneca, to single out potential medicines of the future.

In a unique collaboration between academia and the pharmaceutical industry, teams of experts from both sides gathered together at an ‘ideas generation’ event, designed specifically to identify new areas for research into treatments that can be targeted at cancer, arthritis, cardio-pulmonary disease and other conditions.

The partnership underlines the significance of the EPSRC (Engineering and Physical Sciences Research Council)/AstraZeneca Doctoral Training Centre at the University, set up in 2006 as a direct collaboration with an industry partner to help develop pioneering treatments based on ‘targeted therapeutics’ — regarded as one of the significant future areas in 21st century medicine and in which The University of Nottingham is a UK leader.

The principle behind targeted therapeutics is to send medicines to the parts of the body where they are most needed, at the right time and in the right dose. In this way, diseased sites can be attacked directly, while healthy cells are bypassed, increasing the efficacy of the treatment and reducing side effects.

The University’s £2.5 million EPSRC/AstraZeneca Doctoral Training Centre is training 25 of the UK’s most promising pharmacy PhD students over the next five years in targeted therapeutics. Some of these PhD projects will now focus on ideas generated by the recent ‘ideas generation’ event with AstraZeneca. The ideas which came out of the day-and-a-half meeting, focused on a range of topics including chemistry of new drug delivery systems, biophysical analysis of dosage forms, process analytical technologies and cellular transport of drugs and drug carriers.

Dr Amanda Zeffman, Project Officer, said that the event was one of the first such meetings to take place between academics and scientists from industry.

Dr Zeffman said: “The intention was to generate ideas for PhD projects within the Doctoral Training Centre as well as to encourage general discussion in a relaxed environment, and it was extremely successful.

“By bringing together academics from the Schools of Chemistry, Maths, Computer Science and Physics, with PARD (Pharmaceutical and Analytical Research and Development) and discovery teams from AstraZeneca, we are able to combine the best of academia and industry to establish mutual interests and get a unique perspective on key areas in targeted therapeutics.”

EPSRC's first Doctoral Training Centres were launched in 2002 by EPSRC's Life Sciences Interface Programme. They offer a multi-disciplinary approach to postgraduate training bridging the gap between the medical, biological and physical sciences.

In the Nottingham Doctoral Training Centre, during the initial year of the four-year PhD, students will receive a thorough grounding in pharmaceutical sciences and will spend the first six months completing three, eight-week training projects, of which one is based within AstraZeneca. Each rotation will be in a different research group to enable students to benefit fully from the breadth of research being conducted in the School and by AstraZeneca.

The remaining three years of their time at the centre will be spent working on research projects centred on the theme of targeted therapeutics and drawing on everything from pharmaceutical nanotechnology and biopharmaceuticals to advanced physical, mathematical and life sciences.

AstraZeneca is a global leader in six major areas of healthcare — cardiovascular, gastrointestinal, infection, neuroscience, oncology and respiratory and inflammation — and the partnership with the company will provide a key commercial and clinical focus for the centre. It will improve the prospects of the students gaining jobs within the pharmaceutical industry after completing their training.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk/public-affairs/press-releases/index.phtml?menu=pressreleases&code=SETT-45/07&create_date=21-mar-2007

Further reports about: AstraZeneca Doctoral PhD Pharmaceutical Therapeutics targeted

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>