Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Soy-based product explored as nontoxic substitute for important but toxic reactive compound

Virginia Tech chemists are looking for biobased alternatives and environmentally friendly reaction pathways to replace a toxic intermediate that is a critical component of many polymer products.

Isocyanates are important to many products we take for granted – from paint to spandex running shorts. But the high reactivity for which the chemical group is valued also makes this compound toxic when breathed.

Sharlene R. Williams of Springfield, Ohio, a graduate student in chemistry at Virginia Tech, has created macromolecules with comparable reactivity using soy-based chemistry. She will present the research at the 233rd national meeting of the American Chemical Society in Chicago March 25-29.

“We are looking for alternative chemistry that offers the advantage of reactivity but is not toxic, and is cheaper than petroleum based chemistry,” said Tim Long, professor of chemistry at Virginia Tech. “We are looking at bio-feedstocks such as soy-based triglycerides and peptides in combination with novel chemistry.”

... more about:
»Polymer »reactivity »toxic

Williams has demonstrated that a process called the “Michael addition” induces reactivity in soy proteins, and also improves mechanical properties of the bio-based polymer.

“Agriculture-based polymers may offer comparable performance to petroleum-based polymers,” said Long. “They offer strength and elasticity. We think the Michael addition reaction offers the opportunity to address elastomer technology challenges with safer reactivity.”

Williams will present “Michael addition of acetoacetate functionalized oligomers: From biomedical applications to novel elastomers” (Poly 237) at 2:45 p.m. Tuesday, March 27, in McCormick Place South room S504A. Authors are Long, Williams, Brian D. Mather of Albuquerque, a Ph.D. candidate in chemical engineering and student in the Macromolecules and Interfaces Institute at Virginia Tech, and Kevin M. Miller of Rohm and Haas Company.

Susan Trulove | EurekAlert!
Further information:

Further reports about: Polymer reactivity toxic

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>