Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soy-based product explored as nontoxic substitute for important but toxic reactive compound

28.03.2007
Virginia Tech chemists are looking for biobased alternatives and environmentally friendly reaction pathways to replace a toxic intermediate that is a critical component of many polymer products.

Isocyanates are important to many products we take for granted – from paint to spandex running shorts. But the high reactivity for which the chemical group is valued also makes this compound toxic when breathed.

Sharlene R. Williams of Springfield, Ohio, a graduate student in chemistry at Virginia Tech, has created macromolecules with comparable reactivity using soy-based chemistry. She will present the research at the 233rd national meeting of the American Chemical Society in Chicago March 25-29.

“We are looking for alternative chemistry that offers the advantage of reactivity but is not toxic, and is cheaper than petroleum based chemistry,” said Tim Long, professor of chemistry at Virginia Tech. “We are looking at bio-feedstocks such as soy-based triglycerides and peptides in combination with novel chemistry.”

... more about:
»Polymer »reactivity »toxic

Williams has demonstrated that a process called the “Michael addition” induces reactivity in soy proteins, and also improves mechanical properties of the bio-based polymer.

“Agriculture-based polymers may offer comparable performance to petroleum-based polymers,” said Long. “They offer strength and elasticity. We think the Michael addition reaction offers the opportunity to address elastomer technology challenges with safer reactivity.”

Williams will present “Michael addition of acetoacetate functionalized oligomers: From biomedical applications to novel elastomers” (Poly 237) at 2:45 p.m. Tuesday, March 27, in McCormick Place South room S504A. Authors are Long, Williams, Brian D. Mather of Albuquerque, a Ph.D. candidate in chemical engineering and student in the Macromolecules and Interfaces Institute at Virginia Tech, and Kevin M. Miller of Rohm and Haas Company.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

Further reports about: Polymer reactivity toxic

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>