Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymers show promise for gene delivery, tissue scaffolds, other biomedical applications

28.03.2007
Virginia Tech polymer scientists have developed a new family of gene vectors – novel polymers that can ferry genetic material across the cell membrane so that it can be incorporated into the machinery of the cell.

Representing Virginia Tech faculty members and students from engineering, chemistry, and veterinary medicine, Chemistry Professor Tim Long will give an invited lecture at the 233rd National Meeting of the American Chemical Society in Chicago March 25-29.

The presentation will be an overview of novel polymers developed by Virginia Tech researchers for biomedical applications, with an emphasis on gene delivery and tissue scaffolds. “Both of these emerging technologies are enabled with fundamental advances in polymer chemistry,” Long said.

“Synthetic macromolecules can be easily modified to contain a variety of functional elements capable of interacting with biological systems,” he said. “Initial studies have found macromolecular topology to be a significant parameter in the delivery of DNA into cells.”

... more about:
»Biomedical »Polymer »scaffolds »vectors

In the cell, the new DNA initiates the manufacture of therapeutic proteins, such as might be needed to treat a genetic disease where an enzyme or protein is not produced naturally. The Virginia Tech vectors presently being tested in cell cultures are proving to be superior to surfactant benchmarks and offer reduced toxicity to viral vectors, Long said.

Meanwhile, scientists at Virginia Tech have developed a single-step process for creating fibrous mats from a small organic molecule – a new nanoscale, biocompatible material (Jan. 20, 2006, Science, "Phospholipid Nonwoven Electrospun Membranes," by Matthew G. McKee, John M. Layman, Matthew P. Cashion, and. Long, all at Virginia Tech.).

Since last year, they have improved the durability of the phospholipids through novel photochemistry during electrospinning and have begun to impregnate the porous mats with cells that will initiate tissue regeneration.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

Further reports about: Biomedical Polymer scaffolds vectors

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>