Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic that degrades in seawater could be boon for cruise industry and others

28.03.2007
Large volumes of plastic waste generated aboard military, merchant and cruise ships must be stored onboard, often for prolonged periods, until they make port. In the future, a new type of environmentally friendly plastic that degrades in seawater may make it safe and practical to toss plastic waste overboard, freeing-up valuable storage space, according to scientists at The University of Southern Mississippi (USM).

The biodegradable plastics could replace conventional plastics that are used to make stretch wrap for large cargo items, food containers, eating utensils and other plastics used at sea, the researchers say. The biodegradable plastic has not yet been tested in freshwater. The development was described today at the 233rd national meeting of the American Chemical Society.

“There are many groups working on biodegradable plastics, but we’re one of a few working on plastics that degrade in seawater,” says study leader Robson F. Storey, Ph.D., a professor of Polymer Science and Engineering at USM, located in Hattiesburg, Miss. “We’re moving toward making plastics more sustainable, especially those that are used at sea.”

Conventional plastics can take years to break down and may result in byproducts that are harmful to the environment and toxic to marine organisms, conditions that make their disposal at sea hazardous. The new plastics are capable of degrading in as few as 20 days and result in natural byproducts that are nontoxic, Storey and his associates say. Their study is funded by the Naval Sea Systems Command (NAVSEA), which is supporting a number of ongoing research projects aimed at reducing the environmental impact of marine waste.

... more about:
»Seawater »Storey »degrade »plastic

The new plastics are made of polyurethane that has been modified by the incorporation of PLGA [poly (D,L-lactide-co-glycolide)], a known degradable polymer used in surgical sutures and controlled drug-delivery applications. Through variations in the chemical composition of the plastic, the researchers have achieved a wide range of mechanical properties ranging from soft, rubber-like plastics to hard, rigid structures, depending on their intended use.

When exposed to seawater, the plastics degrade via hydrolysis into nontoxic products, according to the scientists. Depending on the composition of the plastics, these compounds may include water, carbon dioxide, lactic acid, glycolic acid, succinic acid, caproic acid and L-lysine, all of which can be found in nature, they add.

Because the new plastics are denser than saltwater, they have a tendency to sink instead of float, Storey says. That feature also could prevent them from washing up on shore and polluting beaches, he notes.

The plastics are undergoing degradation testing at the U.S. Army Natick Soldier Research, Development, and Engineering Center in Natick, Mass., and in the Gulf of Mexico at the USM Gulf Coast Research Laboratory in Ocean Springs, Miss. Initial results have been favorable, Storey says.

The plastics are not quite ready for commercialization. More studies are needed to optimize the plastics for various environmental conditions they might encounter, including changes in temperature, humidity and seawater composition, Storey says. There also are legal hurdles to overcome, since international maritime law currently forbids disposal of plastics at sea.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Seawater Storey degrade plastic

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>