Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tequila raw ingredient being developed into drug-carrier that targets colon diseases

28.03.2007
Compounds derived from the blue agave, a fruit used to make tequila, shows promise in early laboratory studies as a natural, more effective way to deliver drugs to the colon than conventional drug-carriers, according to chemists at the University of Guadalajara in Mexico. The development could lead to improved treatments for ulcerative colitis, irritable bowel syndrome, cancer, Crohn’s disease and other colon diseases, they say.

Drug delivery to the colon is an ongoing challenge to physicians. Many drugs are destroyed by stomach acids before they’ve had a chance to reach the intestine, where they usually are absorbed. Researchers have tried to circumvent this problem by inserting the drugs into carrier molecules that resist breakdown in the stomach but have had difficulty finding a suitable carrier compound.

The tequila compounds, a class of polysaccharides known as fructans, were developed by the scientists in Mexico into tiny microspheres that are capable of carrying existing drugs that are used to treat colon diseases. Because the compounds resist destruction in the stomach, they could allow more of the drugs to reach the colon intact and improve their effectiveness, the researchers say. Their study was presented today at the 233rd national meeting of the American Chemical Society.

“This study shows that the agave fruit is good for more than just tequila. It also has medicinal value,” says study leader Guillermo Toriz, Ph.D., an assistant professor at the university. “Agave fructan is the ideal natural carrier of drugs for the colon.”

... more about:
»agave »colon »microspheres »tequila

Researchers have known for some time that fructans, which are polymers of fructose, are resistant to acid degradation and theorized that they might be a useful drug delivery vehicle. But only a few plant sources, such as agave, contain fructans in large amounts. The agave fruit is 80 percent fructans by weight when ripe, the researchers say.

Toriz and his associates extracted fructans from the blue agave, the base ingredient of tequila. They chemically modified the fructan compound to allow drugs to be encapsulated, making the drugs resistant to degradation in the digestive system.

The researchers then prepared microspheres of the compounds and filled them with ibuprofen as a model of drug delivery to the colon. In laboratory tests, the ibuprofen-filled microspheres were exposed to hydrochloric acid for an hour and appeared physically intact upon subsequent microscopic examination, the scientists say.

Topiz and his research group currently are working on improving the durability of the fructans and plan animal studies in the future. If further studies show promise, human studies of the agave microspheres are anticipated. Funding for the study was provided by the Mexican National Science and Technology Council.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

Further reports about: agave colon microspheres tequila

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>