Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tequila raw ingredient being developed into drug-carrier that targets colon diseases

28.03.2007
Compounds derived from the blue agave, a fruit used to make tequila, shows promise in early laboratory studies as a natural, more effective way to deliver drugs to the colon than conventional drug-carriers, according to chemists at the University of Guadalajara in Mexico. The development could lead to improved treatments for ulcerative colitis, irritable bowel syndrome, cancer, Crohn’s disease and other colon diseases, they say.

Drug delivery to the colon is an ongoing challenge to physicians. Many drugs are destroyed by stomach acids before they’ve had a chance to reach the intestine, where they usually are absorbed. Researchers have tried to circumvent this problem by inserting the drugs into carrier molecules that resist breakdown in the stomach but have had difficulty finding a suitable carrier compound.

The tequila compounds, a class of polysaccharides known as fructans, were developed by the scientists in Mexico into tiny microspheres that are capable of carrying existing drugs that are used to treat colon diseases. Because the compounds resist destruction in the stomach, they could allow more of the drugs to reach the colon intact and improve their effectiveness, the researchers say. Their study was presented today at the 233rd national meeting of the American Chemical Society.

“This study shows that the agave fruit is good for more than just tequila. It also has medicinal value,” says study leader Guillermo Toriz, Ph.D., an assistant professor at the university. “Agave fructan is the ideal natural carrier of drugs for the colon.”

... more about:
»agave »colon »microspheres »tequila

Researchers have known for some time that fructans, which are polymers of fructose, are resistant to acid degradation and theorized that they might be a useful drug delivery vehicle. But only a few plant sources, such as agave, contain fructans in large amounts. The agave fruit is 80 percent fructans by weight when ripe, the researchers say.

Toriz and his associates extracted fructans from the blue agave, the base ingredient of tequila. They chemically modified the fructan compound to allow drugs to be encapsulated, making the drugs resistant to degradation in the digestive system.

The researchers then prepared microspheres of the compounds and filled them with ibuprofen as a model of drug delivery to the colon. In laboratory tests, the ibuprofen-filled microspheres were exposed to hydrochloric acid for an hour and appeared physically intact upon subsequent microscopic examination, the scientists say.

Topiz and his research group currently are working on improving the durability of the fructans and plan animal studies in the future. If further studies show promise, human studies of the agave microspheres are anticipated. Funding for the study was provided by the Mexican National Science and Technology Council.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

Further reports about: agave colon microspheres tequila

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>