Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£18M for new European research initiative in Systems Biology

28.03.2007
The application of systems biology to the study of the smallest life forms has taken a leap forward with the announcement of £18M of funding from a new European programme to 11 multi-national projects studying medically and commercially important microorganisms. UK scientists are involved in 10 of the projects that range from understanding the biological pathways of extreme organisms living on volcanic springs through to studying a bacterium key to yoghurt production.

Systems biology is a new approach to bioscience that combines theory, computer modelling and experiments. It is revolutionising how bioscientists think and work and will make the outputs on their work more useful, and easier to use in industry and policymaking. Instead of using the traditional biology approach of observation and experiment, systems biology uses computer simulations and modelling to process results, design new experiments and generate predictive solutions.

The new European programme, Systems Biology of Microorganisms (SysMO), is being managed in the UK by the Biotechnology and Biological Sciences Research Council (BBSRC), who contributed with £7.4 M to this initiative. BBSRC is already a leading supporter of systems biology, having invested £47M in 6 centres across the UK in the last two years and launching £35M of initiatives to foster systems biology related knowledge transfer last autumn.

Professor Julia Goodfellow, BBSRC Chief Executive, said: "In order to remain internationally competitive in the biosciences, the research community must look to a future which is increasingly quantitative and data rich. We have to adopt approaches which enable us to look at the whole system. Using such systems approaches to study microorganisms, as announced today, will lead to both a leap forward in our understanding and also offer us real opportunities for developing applications useful for industry, consumers and patients. I hope that these multi-national projects will form the basis for future pan-European systems biology research."

... more about:
»approach »microorganisms

SysMO aims to apply the principles of systems biology to studying single cell organisms. The projects funded are intended to significantly improve our understanding of microorganisms that have important applications for industry or medicine. Some of the projects funded are:

* A project involving UK, German and Dutch researchers to understand what triggers butanol production in the bacterium Clostridium acetobutylicum. Butanol is being studied as a potential biofuel in place of ethanol and the research team hope that their work could lead to more effective fuel production. The bacterium is closely related to the hospital superbug Clostridium dificile and the research may also generate useful countermeasures in the fight against hospital acquired infections.

* Extremophiles are organisms that thrive in extreme conditions unsuitable for most forms of life. One SysMO funded project involving partners from four countries, including the UK, is planning to study extremophiles with the aim of understanding how their metabolic pathways are affected by temperature shifts. The research will help both to understand how this basic biological function in organisms will be affected by climate change and also help to develop 'extreme' enzymes for clinical and industrial use.

* A project to look at why small genetic differences cause stark and important differences in species. Scientists in six countries, including the UK, aim to understand the differences between a group of highly-related microorganisms - Lactococcus lactis, Enterococcus faecalis, Streptococcus pyogenes. All have a metabolism that is able to convert sugar lactose into lactic acid but the first is important to industry for fermenting food, such as yoghurt while the latter two are a major contamination threat for food and water and a cause of toxic shock syndrome respectively.

The SysMO programme is funding a total of 11 projects running for three years. It is being financed by the UK, Austria, Germany, The Netherlands, Norway and Spain.

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: approach microorganisms

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>