Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£18M for new European research initiative in Systems Biology

28.03.2007
The application of systems biology to the study of the smallest life forms has taken a leap forward with the announcement of £18M of funding from a new European programme to 11 multi-national projects studying medically and commercially important microorganisms. UK scientists are involved in 10 of the projects that range from understanding the biological pathways of extreme organisms living on volcanic springs through to studying a bacterium key to yoghurt production.

Systems biology is a new approach to bioscience that combines theory, computer modelling and experiments. It is revolutionising how bioscientists think and work and will make the outputs on their work more useful, and easier to use in industry and policymaking. Instead of using the traditional biology approach of observation and experiment, systems biology uses computer simulations and modelling to process results, design new experiments and generate predictive solutions.

The new European programme, Systems Biology of Microorganisms (SysMO), is being managed in the UK by the Biotechnology and Biological Sciences Research Council (BBSRC), who contributed with £7.4 M to this initiative. BBSRC is already a leading supporter of systems biology, having invested £47M in 6 centres across the UK in the last two years and launching £35M of initiatives to foster systems biology related knowledge transfer last autumn.

Professor Julia Goodfellow, BBSRC Chief Executive, said: "In order to remain internationally competitive in the biosciences, the research community must look to a future which is increasingly quantitative and data rich. We have to adopt approaches which enable us to look at the whole system. Using such systems approaches to study microorganisms, as announced today, will lead to both a leap forward in our understanding and also offer us real opportunities for developing applications useful for industry, consumers and patients. I hope that these multi-national projects will form the basis for future pan-European systems biology research."

... more about:
»approach »microorganisms

SysMO aims to apply the principles of systems biology to studying single cell organisms. The projects funded are intended to significantly improve our understanding of microorganisms that have important applications for industry or medicine. Some of the projects funded are:

* A project involving UK, German and Dutch researchers to understand what triggers butanol production in the bacterium Clostridium acetobutylicum. Butanol is being studied as a potential biofuel in place of ethanol and the research team hope that their work could lead to more effective fuel production. The bacterium is closely related to the hospital superbug Clostridium dificile and the research may also generate useful countermeasures in the fight against hospital acquired infections.

* Extremophiles are organisms that thrive in extreme conditions unsuitable for most forms of life. One SysMO funded project involving partners from four countries, including the UK, is planning to study extremophiles with the aim of understanding how their metabolic pathways are affected by temperature shifts. The research will help both to understand how this basic biological function in organisms will be affected by climate change and also help to develop 'extreme' enzymes for clinical and industrial use.

* A project to look at why small genetic differences cause stark and important differences in species. Scientists in six countries, including the UK, aim to understand the differences between a group of highly-related microorganisms - Lactococcus lactis, Enterococcus faecalis, Streptococcus pyogenes. All have a metabolism that is able to convert sugar lactose into lactic acid but the first is important to industry for fermenting food, such as yoghurt while the latter two are a major contamination threat for food and water and a cause of toxic shock syndrome respectively.

The SysMO programme is funding a total of 11 projects running for three years. It is being financed by the UK, Austria, Germany, The Netherlands, Norway and Spain.

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: approach microorganisms

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>