Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tale of two Mals: researchers identify key protein in immune response to malaria and TB

27.03.2007
An international team of researchers has identified a key protein involved in the immune system's response to malaria, tuberculosis (TB) and a number of other infectious diseases. The insights suggest possible new therapies to tackle these major global diseases.

Professor Luke O'Neill from Trinity College Dublin, Ireland, identified the protein in 2001. The protein, known as Mal, alerts the immune system to respond against invading bacteria. Now, Professor Adrian Hill from the Wellcome Trust Centre for Human Genetics, University of Oxford, UK, has shown that there are two variants of Mal in humans and that the combination of these variants determines how the immune system responds.

The results of the study, funded by the Wellcome Trust, Science Foundation Ireland, Irish Health Research Board and the Agency for Science, Technology and Research, Singapore, are published in the April edition of Nature Genetics this week.

"Mal is in effect an alarm system for the immune system," explains Professor O'Neill. "When the body is infected with the malaria parasite or other germs, a set of sensors called 'toll-like receptors' (TLRs) lock onto the intruder. TLRs relay the detection via Mal, which wakes up the immune system to mobilise and defend us."

... more about:
»Malaria »Protein »developing »immune system »variant

However, working with patients in Kenya, the Gambia, Vietnam and the UK, Professor Hill and his team showed that there are two common variants of the protein, one which allows the immune system to work normally, the other resulting in too strong a stimulation. A person will carry a combination of two copies of the protein, one from the mother and one from the father.

"If you have the overactive type, you are twice as likely to succumb to infection because your immune system goes into overdrive, often leading to severe forms of the disease, in a manner akin to ‘friendly fire’," explains Professor Hill, a Wellcome Trust Principal Research Fellow. "Similarly, if you have two copies of the less active form, the body does not fight the infection and you get the disease. The optimum situation is to have one copy of each variant, giving a balanced system, sufficient to mount a response, but not overly activating."

The researchers found that having the overactive Mal doubled the risk of disease, with a four times greater risk of severe malaria in some populations. Malaria and TB account for over five million deaths per year in the developing world, particularly amongst children.

"We hope that a drug that modulates the balance of Mal variants might prevent disease in those who are at greater risk," says Professor O'Neill. "Our next step is to work towards developing such drugs."

The research has been welcomed by Dr Mark Walport, Director of the Wellcome Trust, which funds research into diseases of the developing world such as malaria and TB, mainly through its major overseas programmes.

"Malaria and TB present a major challenge to the health of people in the developing world," says Dr Walport. "Particularly given the recent rise in the number of cases of drug-resistant strains, it is essential that we understand how the immune system responds to infection if we are to develop novel treatments."

The researchers also believe that the findings may provide a valuable insight into how dysfunctional immune systems can lead to non-infectious diseases, specifically autoimmune diseases such as type 1 diabetes and rheumatoid arthritis.

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk

Further reports about: Malaria Protein developing immune system variant

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>