Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA layer reduces risk of reserve parts being rejected

27.03.2007
Dutch researchers Jeroen van den Beucken and John Jansen have given body implants a DNA layer. This layer ensures a better attachment, more rapid recovery of the surrounding tissue and less immune responses.

The older we get the more 'reserve-parts' we need. Up until now placing such parts yielded advantages, but also disadvantages such as inflammations and immune responses. Van den Beucken's invention makes it easier and more reliable to use implants and has already been patented.

Van den Beucken reasoned that a DNA coating should have a lot of advantages. Such a coating approximates the body's own material with the result that a less intense immune response occurs. Further DNA is rich in phosphate groups that can speed up the attachment to bone tissue and therefore the integration of bone implants in the native bone tissue. Finally, DNA can be enriched with biologically active factors that, for example, facilitate the formation of bone tissue and blood vessels. All in all, a DNA coating could be safe, reduce the immune response, facilitate bone attachment and be functionalisable.

Layer by layer
However, enzymes in the body will quickly break down a DNA coating. A method therefore had to be found to firmly attach the DNA to the implant surface. Van den Beucken used the Layer-by-Layer deposition technique (see Figure 1) to produce a multilayer coating. This coating was tested in cell cultures and animal experiments for its safety, immune response, bone attachment and functionalisation. The DNA layer was also found to speed up the deposition of calcium phosphate and could, for example, be adapted to promote bone and blood vessel formation. The good research results led to the patenting of DNA coatings for implants. A biomedical company is currently investigating whether they can take over the patent.
More possibilities
Following this successful result, Van den Beucken will investigate whether DNA layers can be used for the application of DNA membranes to prevent post-operative adhesions, and in biosensors such as an implanted glucose sensor for diabetic patients.
... more about:
»Attachment »Beucken »Coating »Implant »immune

Jeroen van den Beucken's research was funded by Technology Foundation STW. Technology Foundation STW receives part of its funding from the Netherlands Organisation for Scientific Research (NWO).

Jeroen van den Beucken | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_6YPLCB_Eng

Further reports about: Attachment Beucken Coating Implant immune

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>