Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leukemic cells find safe haven in bone marrow

26.03.2007
St. Jude study shows mesenchymal cells in bone marrow supply leukemic cells with the amino acid asparagine, restoring this critical nutrient when it is depleted by the cancer drug asparaginase

The cancer drug asparaginase fails to help cure some children with acute lymphoblastic leukemia (ALL) because molecules released by certain cells in the bone marrow counteract the effect of that drug, according to investigators at St. Jude Children's Research Hospital.

The researchers showed that mesenchymal cells in the bone marrow create a protective niche for leukemic cells by releasing large amounts of asparagine, an amino acid that nearby leukemic cells must have to survive but do not make efficiently. This extra supply of asparagine helps leukemic cells survive treatment with asparaginase, a drug that normally would deplete their supply of this vital nutrient, the researchers reported. Mesenchymal cells give rise to a variety of different tissues, such as osteoblasts (bone-building cells) and chondrocytes (cartilage-building cells), and form the nurturing environment where normal blood cells and leukemic cells grow.

"Leukemic cells that resist asparaginase and survive in this protective niche of the bone marrow might be the reason that leukemia recurs in some children who have been treated with this drug," said Dario Campana, M.D., Ph.D., a member of the St. Jude Oncology and Pathology departments.

Campana is senior author of the report that appears in the online pre-publication issue of "The Journal of Clinical Investigation."

"Our findings indicate that the level of activity of the "ASNS" gene in the mesenchymal cells is key to protecting leukemic cells in the bone marrow from asparaginase," Campana said. "This insight will help researchers find ways to disrupt this safe haven for leukemic cells that need asparagine," added James R. Downing, M.D., St. Jude scientific director and chair of the Pathology department. Downing is a co-author of "The Journal of Clinical Investigation" paper. The "ASNS" gene controls production of the enzyme asparagine synthetase (ASNS), which leukemic cells use to make asparagine.

The study’s findings also suggest that drugs now being developed to block ASNS should be tested to see if they also prevent mesenchymal cells from making this amino acid. In addition, the ability of mesenchymal cells to make asparagine might be decreased by cancer drugs that are already known to disrupt the activity of those cells.

"Because asparaginase is so widely used to treat ALL, this new insight into how mesenchymal cells protect leukemic cells is very important," said Ching-Hon Pui, M.D., chair of the Oncology department and American Cancer Society Professor at St. Jude. "The more we learn about the molecular interactions between these cells, the more likely we’ll be able to enhance the anti-leukemic action of asparaginase and perhaps other anti-leukemic drugs as well," said Pui, a co-author of the paper. "That would reduce the recurrence rate of ALL and continue our successful efforts to increase the survival rate of ALL."

Previous research at St. Jude and elsewhere had shown that direct contact with bone marrow mesenchymal cells is essential for the long-term survival and multiplication of leukemic lymphoblasts. In the current study, the team found that the gene for ASNS was more than 20 times active in producing this enzyme in mesenchymal cells than in ALL cells.

Experiments performed by co-authors Shotaro Iwamoto, M.D., and Keichiro Mihara, postdoctoral fellows in Campana’s laboratory, demonstrated that ALL cells from different patients became much more resistant to asparaginase when cultured on top of a layer of mesenchymal cells. In order to determine whether it was the high levels of asparagine released by mesenchymal cells that protected ALL cells from asparaginase, the St. Jude team repeated the experiment, but blocked the ability of mesenchymal cells to make the ASNS enzyme and produce asparagine. In this case, the protective effect of mesenchymal cells was eliminated. Conversely, when the researchers caused the ASNS gene to work overtime making asparagine, the ability of the mesenchymal cells layer to protect the ALL cells was significantly enhanced. The team also showed that the more actively "ASNS" genes produced ASNS in mesenchymal cells, the higher levels of asparagine they released.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: ASNS Protect asparaginase asparagine leukemic marrow mesenchymal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>