Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Glass Brain

26.03.2007
It is one of the great dreams of brain research to visualize at once all nerve cells and their connections of a complete brain in 3D. Scientists of the Max Planck Institute of Psychiatry in Munich and the Vienna University of Technology (TU Vienna) have now come a step closer to turning this dream into reality.

They have succeeded in making whole mouse brains transparent and then to reconstruct parts of their neuronal networks with a computer. During their investigations at the MPI of Psychiatry they put mouse brains in an oil solution which rendered the brains completely transparent, as now published in Nature Methods. They transilluminated these transparent brains with a laser from the side layer by layer. This way, green fluorescence was induced in genetically marked nerve cells.

Using the many images from their “ultramicroscope” the scientists in the research group of the medical doctor and physicist Hans-Ulrich Dodt were able to reconstruct parts of the neuronal network in three dimensions, comparable to computer tomography but with much higher resolution.

Prof. Dodt who was appointed to the chair of Bioelectronics of the TU Vienna in January, plans to utilize this method to investigate the complex neuronal networks of the cortex. The scientists are interested to see if it is possible to visualize alterations at nerve cells after learning using this method. Ultramicroscopy will also be used to investigate the development of neuronal diseases like Alzheimer`s in mice. Besides science, the technique also has an aesthetic aspect: One can simulate a fly-through the brain using the recorded data. Therefore in the future the technique of the glass brain will be used probably for teaching students employing a “Playstation Brain”.

Werner Sommer | alfa
Further information:
http://www.tuwien.ac.at/index.php?id=3392

Further reports about: Nerve Neuronal Transparent

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>