Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Glass Brain

26.03.2007
It is one of the great dreams of brain research to visualize at once all nerve cells and their connections of a complete brain in 3D. Scientists of the Max Planck Institute of Psychiatry in Munich and the Vienna University of Technology (TU Vienna) have now come a step closer to turning this dream into reality.

They have succeeded in making whole mouse brains transparent and then to reconstruct parts of their neuronal networks with a computer. During their investigations at the MPI of Psychiatry they put mouse brains in an oil solution which rendered the brains completely transparent, as now published in Nature Methods. They transilluminated these transparent brains with a laser from the side layer by layer. This way, green fluorescence was induced in genetically marked nerve cells.

Using the many images from their “ultramicroscope” the scientists in the research group of the medical doctor and physicist Hans-Ulrich Dodt were able to reconstruct parts of the neuronal network in three dimensions, comparable to computer tomography but with much higher resolution.

Prof. Dodt who was appointed to the chair of Bioelectronics of the TU Vienna in January, plans to utilize this method to investigate the complex neuronal networks of the cortex. The scientists are interested to see if it is possible to visualize alterations at nerve cells after learning using this method. Ultramicroscopy will also be used to investigate the development of neuronal diseases like Alzheimer`s in mice. Besides science, the technique also has an aesthetic aspect: One can simulate a fly-through the brain using the recorded data. Therefore in the future the technique of the glass brain will be used probably for teaching students employing a “Playstation Brain”.

Werner Sommer | alfa
Further information:
http://www.tuwien.ac.at/index.php?id=3392

Further reports about: Nerve Neuronal Transparent

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>