Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making mice with enhanced color vision

23.03.2007
Researchers at the Johns Hopkins School of Medicine and their colleagues have found that mice simply expressing a human light receptor in addition to their own can acquire new color vision, a sign that the brain can adapt far more rapidly to new sensory information than anticipated.

This work, appearing March 23 in Science, also suggests that when the first ancestral primate inherited a new type of photoreceptor more than 40 million years ago, it probably experienced immediate color enhancement, which may have allowed this trait to spread quickly.

"If you gave mice a new sensory input at the front end, could their brains learn to make use of the extra data at the back end?" asks Jeremy Nathans M.D., Ph.D., professor of molecular biology and genetics, neuroscience, and ophthalmology at Hopkins. "The answer is, remarkably, yes. They did not require additional generations to evolve new sight."

Retinas of primates such as humans and monkeys are unique among mammals in that they have three visual receptors that absorb short (blue), medium (green) and long (red) wavelengths of light. Mice, like other mammals, only have two; one for short and one for medium wavelengths.

... more about:
»monkeys »photoreceptor »primate »wavelength

In the study, the researchers designed a "knock-in" mouse that has one copy of its medium wavelength receptor replaced with the human long wavelength receptor, so both were expressed in the retina. The human receptors were biologically functional in the mice, but the real question was whether the mice could use the new visual information.

To address this question, the researchers used a classic preference test; mice set before three light panels were trained to touch the one panel that appeared to differ from the other two. A correct answer was rewarded with a drop of soy milk.

To circumvent thorny issues related to the subjective nature of color perception -- everyone who has had a discussion as to whether the "green" they see is the same as the "green" their friend sees can attest to this -- the researchers only tested whether the mice could discriminate among the lights.

"Each photoreceptor absorbs a range of wavelengths, but the efficiency changes with wavelength," Nathans explains. "For example, one photoreceptor might absorb green light only half as efficiently as red light. If an animal had only this type of photoreceptor, then a green light that was twice as bright as a red light would look identical to the red one. But if the animal adds a second photoreceptor with different absorption properties, then by comparing both receptors, the red and green lights could always be distinguished."

Normal mice failed to discriminate yellow versus red lights when the light intensities were set to give equal activation of their middle wavelength receptor. However, mice with both the human long wavelength and the mouse middle wavelength receptors learned to tell the difference, although it took over 10,000 trials to learn to make the distinction.

Nathans suggests that these knock-in mice mimic how our earliest primate ancestors acquired trichromatic vision, color vision based on three receptors. At some point in the past, random mutations created a variant of one receptor gene, located on the X chromosome, producing two different receptor types. Present-day New World (South American) monkeys still use this system, which means that in these monkeys only certain females can acquire trichromatic color vision.

In contrast, among Old World (African) primates such as humans, the two different X chromosome genes duplicated so that each X chromosome now carries the genes for both receptor types, giving both males and females trichromatic color vision.

"You could say that the original primate color vision system, and the one that New World monkeys still use today, is the poor man's -- or to be accurate, poor woman's -- version of color vision," Nathans says.

Nick Zagorski | EurekAlert!
Further information:
http://www.sciencemag.org
http://www.jhmi.edu

Further reports about: monkeys photoreceptor primate wavelength

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>