Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making mice with enhanced color vision

23.03.2007
Researchers at the Johns Hopkins School of Medicine and their colleagues have found that mice simply expressing a human light receptor in addition to their own can acquire new color vision, a sign that the brain can adapt far more rapidly to new sensory information than anticipated.

This work, appearing March 23 in Science, also suggests that when the first ancestral primate inherited a new type of photoreceptor more than 40 million years ago, it probably experienced immediate color enhancement, which may have allowed this trait to spread quickly.

"If you gave mice a new sensory input at the front end, could their brains learn to make use of the extra data at the back end?" asks Jeremy Nathans M.D., Ph.D., professor of molecular biology and genetics, neuroscience, and ophthalmology at Hopkins. "The answer is, remarkably, yes. They did not require additional generations to evolve new sight."

Retinas of primates such as humans and monkeys are unique among mammals in that they have three visual receptors that absorb short (blue), medium (green) and long (red) wavelengths of light. Mice, like other mammals, only have two; one for short and one for medium wavelengths.

... more about:
»monkeys »photoreceptor »primate »wavelength

In the study, the researchers designed a "knock-in" mouse that has one copy of its medium wavelength receptor replaced with the human long wavelength receptor, so both were expressed in the retina. The human receptors were biologically functional in the mice, but the real question was whether the mice could use the new visual information.

To address this question, the researchers used a classic preference test; mice set before three light panels were trained to touch the one panel that appeared to differ from the other two. A correct answer was rewarded with a drop of soy milk.

To circumvent thorny issues related to the subjective nature of color perception -- everyone who has had a discussion as to whether the "green" they see is the same as the "green" their friend sees can attest to this -- the researchers only tested whether the mice could discriminate among the lights.

"Each photoreceptor absorbs a range of wavelengths, but the efficiency changes with wavelength," Nathans explains. "For example, one photoreceptor might absorb green light only half as efficiently as red light. If an animal had only this type of photoreceptor, then a green light that was twice as bright as a red light would look identical to the red one. But if the animal adds a second photoreceptor with different absorption properties, then by comparing both receptors, the red and green lights could always be distinguished."

Normal mice failed to discriminate yellow versus red lights when the light intensities were set to give equal activation of their middle wavelength receptor. However, mice with both the human long wavelength and the mouse middle wavelength receptors learned to tell the difference, although it took over 10,000 trials to learn to make the distinction.

Nathans suggests that these knock-in mice mimic how our earliest primate ancestors acquired trichromatic vision, color vision based on three receptors. At some point in the past, random mutations created a variant of one receptor gene, located on the X chromosome, producing two different receptor types. Present-day New World (South American) monkeys still use this system, which means that in these monkeys only certain females can acquire trichromatic color vision.

In contrast, among Old World (African) primates such as humans, the two different X chromosome genes duplicated so that each X chromosome now carries the genes for both receptor types, giving both males and females trichromatic color vision.

"You could say that the original primate color vision system, and the one that New World monkeys still use today, is the poor man's -- or to be accurate, poor woman's -- version of color vision," Nathans says.

Nick Zagorski | EurekAlert!
Further information:
http://www.sciencemag.org
http://www.jhmi.edu

Further reports about: monkeys photoreceptor primate wavelength

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>