Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading woman scientist receives accolade for her research into cancer protection

23.03.2007
The Biochemical Society’s Sir Frederick Gowland Hopkins Memorial Lecture,in which a researcher is asked to assess the effect of recent advances in his or her field, will in 2008 be given by Karen Vousden who heads up the Beatson Institute for Cancer Research in Glasgow.

It is already widely known that the tumour suppressor p53 (a protein) plays a critical role in protecting us from cancer. Much of what we know about p53 comes from the work of Karen Vousden – she discovered the important factor that the loss of p53 played in the development of cervical carcinomas and linked this to a tumour virus that triggers this form of cancer.

Karen’s work also provided major insights into just how p53 is able to suppress tumour development; not only can it stop the proliferation of cancer cells but it can also cause them to suicide through the process of apoptosis.

The potential benefits of Karen’s work, for cancer patients, are enormous in terms of the development of molecules that might be used as drugs to stabilize and activate p53.

... more about:
»Cancer »Vousden »p53

Dr Karen Vousden gained her PhD Genetics at University of London and went on to work with Professor Chris Marshall at the Institute of Cancer Research, London for her post-doc research. Further posts with the National Cancer Institute at Bethesda, USA and heading up the Human Papillomavirus Group at the Ludwig Institute for Cancer Research followed by senior positions at the NCI-FCRDC, culminated in her appointment as Director of the Beatson Institute in 2002.

Mark Burgess | alfa
Further information:
http://www.biochemistry.org/medals/default.htm

Further reports about: Cancer Vousden p53

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>