Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists uncover gene mutation that cuts colon polyps

22.03.2007
Cancer biologists at the Kimmel Cancer Center at Jefferson have found a gene mutation that can dramatically reduce the number of colon polyps that develop, and in turn, potentially cut the risk of cancer.

In experiments with mice genetically prone to develop polyps, researchers discovered that animals carrying one copy of the damaged gene, Atp5a1, had about 90 percent fewer polyps in the small intestine and colon. Because people with large numbers of such polyps are at significantly higher risk to develop colon cancer, the finding may provide new ways to diagnose, prevent and treat colon cancer, the scientists say. They report their findings March 22, 2007 online in the journal Genome Research.

The researchers, led by Arthur Buchberg, Ph.D., and Linda Siracusa, Ph.D., both associate professors of microbiology and immunology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, studied a type of mice called Min (multiple intestinal neoplasia). Such mice carry mutations in the Apc gene, which causes the development of intestinal tumors in mice. An alteration in the corresponding human gene, APC, is the first step in most cases of the development of colon polyps and the majority of colorectal cancers.

It turns out that Atp5a1, which is crucial for the cell’s energy production, is also a “modifier” gene. Modifier genes play roles in individual susceptibility to cancers. “Modifier genes alter a phenotype dictated by other genes,” explains Dr. Siracusa. “If a person inherits a mutation in the APC gene, a modifier gene can make that number of polyps – and tumors – either higher or lower, and can mean a person is more prone or resistant to developing polyps and tumors.”

... more about:
»Atp5a1 »Chromosome »Mutation »colon »polyps

In earlier work, the husband and wife team had identified the general region on the chromosome for the mutation. “Now, we’ve identified the gene and it’s very important – it encodes a subunit of the ATP synthase protein, which is known as the molecular motor in the mitochondria, and responsible for the production of ATP and energy in cells,” says Dr. Buchberg. They have dubbed Atp5a1 “Mom2,” for Modifier of Min 2 gene, having previously identified the first modifier of Min mice, Mom1.

“No one as far as we know has ever found a mutation in this gene,” says Dr. Siracusa, noting that both gene mutations – Apc and Atp5a1 – are on mouse chromosome 18. “If the other normal chromosome is lost for some reason, or mice have two copies of the mutant Atp5a1, they die in embryonic development, presumably because the cells lack an energy source.”

The corresponding human gene, ATP5A1, is also located on chromosome 18, in a region that sometimes shows genetic mutations in colon tumors.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Atp5a1 Chromosome Mutation colon polyps

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>