Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover 'vitiligo gene', paving the way for new treatments

22.03.2007
In a study appearing in the March 22 edition of The New England Journal of Medicine, researchers at St George’s, University of London, the University of Colorado at Denver and Health Sciences Center (UCDHSC) and the Barbara Davis Center for Childhood Diabetes have discovered a connection between a gene and the chronic skin condition vitiligo, as well as a possible link to an array of other autoimmune diseases.

Supported by grants from the National Institutes of Health and funding from the Vitiligo Society (UK) and the National Vitiligo Foundation (USA), the study analysed two independent groups of families enrolled between 1996 and 2005. Samples were obtained from a total of 656 Caucasian individuals from 114 extended families with vitiligo and other epidemiologically associated autoimmune and autoinflammatory diseases from the United States and the United Kingdom.

The researchers began with a study of vitiligo, a distressing condition causing loss of pigment resulting in irregular pale patches of skin, which is visibly detectable in the 0.5% to 1% of people affected by it. The researchers found that persons with vitiligo also have a risk of developing other autoimmune diseases, as do their close relatives, even those without vitiligo. By searching the genome, the researchers discovered that NALP1 – a gene that controls part of the immune system that serves to alert the body to viral and bacterial attacks – was a key gene involved in predisposing to vitiligo and all the other autoimmune diseases that ran in these families.

“The findings give us a clue to why the immune system attacks one of the body’s own tissues: if the sensor NALP1 is over-reactive, it could trigger a response to the wrong stimulus,” said Professor Dorothy Bennett, Professor of Cell Biology at St George’s, University of London, and investigator for the UK arm of this study. “We hope to study exactly how this works, and to learn even more from the other genes that we are working to identify.

... more about:
»George’s »NALP1 »Spritz »autoimmune »vitiligo

“We are enormously grateful to the patients for their enthusiastic participation, and it’s a great pleasure to find that the first major gene identified is one that suggests new approaches to treatment.”

St George’s, University of London, recruited around half the families who took part in this research, working with the Vitiligo Society. Clinical Co-ordinator Anita Amadi-Myers, of St George’s, worked with patients to get family information and samples. These were sent for analysis to the University of Colorado.

“What’s really exciting for us is that NALP1 hasn’t been specifically implicated in autoimmune diseases before,” said Richard Spritz, MD, director of the Human Medical Genetics Program at UCDHSC and lead investigator for this study. “Since NALP1 appears to be part of our body’s early-warning system for viral or bacterial attack, this gives us ideas about how to try to discover the environmental triggers of these diseases. This finding may also open up new approaches to treatment, possibly for many different autoimmune diseases.”

As a group of approximately 80 disorders that can involve almost any tissue, organ or system, autoimmune and autoinflammatory diseases affect 15 million to 25 million people in the United States. In women, they rank among the top ten causes of death.

Dr. Spritz and his team hope to soon begin organising a clinical trial of a new treatment for vitiligo, based on their NALP1 discovery. Spritz foresees research labs using the information from the UCDHSC study to replicate or test the results in patients with other autoimmune diseases to see how broad potential applications might be. His hope is that the gene NALP1 is also found to be involved in autoimmune and autoinflammatory diseases such as Type 1 diabetes, Addison’s disease, thyroid disease and lupus, among others.

“All diseases are complex, the result of different genes and environmental risk factors acting together in concert. But if NALP1 turns out to be one of the major genes involved in numerous autoimmune diseases, and if we can interrupt its negative effects, we may have the chance to treat many different chronic autoimmune disorders like vitiligo, lupus and psoriasis and perhaps eventually eliminate them altogether,” said Dr. Spritz.

Tamsin Starr | alfa
Further information:
http://www.sgul.ac.uk

Further reports about: George’s NALP1 Spritz autoimmune vitiligo

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>