Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How parasites keep the gene pool healthy

22.03.2007
All life forms have depended on having a diverse range of genes in order to adapt and survive through the ages. Research published today (Thursday) in the print edition of Proceedings of the Royal Society B reveals how parasites co-evolve with their hosts so that genetic diversity is maintained. Compromise between hosts and parasites is vital, say scientists at the John Innes Centre.

Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have developed a mathematical model to examine how organisms can maintain their gene diversity for resistance to disease. The research highlights how a diverse gene pool helps plants and animals to deal with diseases, and how parasites, in return, use genetic diversity to overcome defences.

"The more diverse, or polymorphic, the organism is, the more it can adapt to its environment. One of the reasons for this genetic diversity is interaction between parasite and host," comments Professor James Brown.

Despite millions of years of evolution where increasingly improved resistance to disease should be expected, plants and animals including humans are still susceptible to parasites in varying degrees. Aurélien Tellier, a Ph.D. student working with Brown, proposes a general solution to this paradox with their mathematical theory.

... more about:
»Brown »adapt »genetic diversity »parasite

Parasites constantly adapt to host organisms, and their hosts constantly evade attack by evolving resistance. But compromise is of the essence, according to Tellier and Brown. They show that when the rate at which the parasite adapts to its host slows down as parasite numbers increase, the genetic diversity in both host and parasite can be maintained. Eventually, the host and parasite arrive at a compromise, where the parasite ceases to become more virulent and the host ceases to become more resistant.

The theory predicts that many biological and ecological factors are likely to contribute to the compromise - for instance when several generations of the parasite survive in the host, or when plant seeds survive several years in the soil without germinating.

"Without these challenging factors in our environment we would most likely have lost genetic diversity a long time ago and become less able to cope with diseases," said Brown.

Professor Julia Goodfellow, BBSRC Chief Executive, said: "This research gives us a better understanding of how we have genetically adapted to our environment, and contributes to our knowledge of disease resistance."

Press Office | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Brown adapt genetic diversity parasite

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>