Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers uncover protection mechanism of radiation-resistant bacterium

Findings could lead to new protections from radiation exposure

Recent discoveries by researchers at the Uniformed Services University of the Health Sciences (USU) could lead to new avenues of exploration for radioprotection in diverse settings. Michael J. Daly, Ph.D., an associate professor in USU's Department of Pathology, and his colleagues have uncovered evidence pointing to the mechanism through which the extremely resilient bacterium Deinococcus radiodurans protects itself from high doses of ionizing radiation (IR). The results of the recent study, titled "Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance" were published in the March 20 edition of PLoS Biology.

These discoveries likely will cause a shift in D. radiodurans research, changing the focus from DNA damage and repair toward a potent form of protein protection. These findings point to new avenues of exploration for radioprotection, which could eventually influence how individuals are treated for exposure to chronic or acute doses of radiation; could lead to ways to protect cancer patients from the toxic effects of radiation therapy; and may prove significant in efforts to contain toxic runoff from radioactive Cold War waste sites.

Fifty years ago, scientists discovered D. radiodurans, leading to speculation that the incredible degree of resistance exhibited by the bacteria has to do with its mechanism of DNA repair, and the majority of research on the bacteria has centered on this hypothesis. However, D. radiodurans has subsequently shown nothing obviously unusual in its DNA repair components, and it appears that bacteria at differing levels of resistance sustain the same amount of DNA damage from a given dose of IR. Additionally, many bacteria are killed by IR doses that actually cause very little DNA damage.

... more about:
»DNA »Radiation »bacteria »radiodurans

In a 2004 study, Daly and colleagues found that resistant and sensitive bacterial cells had significantly different metal concentrations, pointing to high levels of manganese and low iron levels as possible influences on cellular recovery following irradiation. The team showed that the most resistant bacterial species contained approximately 300 times more manganese and three times less iron than the most sensitive species. In the new study, which examined the functional consequences of this disparity, the researchers demonstrated that high cytosolic manganese and low iron concentrations enable resistance by protecting proteins, but not DNA, from IR-induced oxidative damage.

Lisa Reilly | EurekAlert!
Further information:

Further reports about: DNA Radiation bacteria radiodurans

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>