Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feinstein Researchers Uncover Genetic Risk for Schizophrenia

21.03.2007
Psychiatric researchers at The Zucker Hillside Hospital campus of The Feinstein Institute for Medical Research have uncovered evidence of a new gene that appears to increase the risk of developing schizophrenia, a disorder characterized by distorted thinking, hallucinations and a reduced ability to feel normal emotions.

Working in conjunction with researchers at the Harvard Medical School Partners Center for Genetics and Genomics in Boston, MA, the Zucker Hillside team utilized a cutting-edge technology called whole genome association (WGA) to search the entire human genome in 178 patients with schizophrenia and 144 healthy individuals. WGA technology was used to examine over 500,000 genetic markers in each individual, the largest number of such markers examined to date, and the first published study to utilize WGA technology in a psychiatric illness. Previous studies have been much more limited in scope, often incorporating less than 10 markers.

The study results are scheduled to be published online Tuesday in Molecular Psychiatry, which can be accessed at http://www.nature.com/mp/journal/vaop/ncurrent/index.html.

Of the 500,000 genetic markers, the researchers found that the most significant link with schizophrenia came from a marker located in a chromosomal region called the pseudoautosomal region 1 (PAR1), which is on both the X and Y chromosomes. The marker was located adjacent to two genes, CSF2RA and IL3RA, which previously were thought to play a role in inflammation and autoimmune disorders. Those two genes produce receptors for two cytokines, GM-CSF and interleukin-3. Cytokines are involved in the body’s response to infection, and may play a role in the brain’s response to injury.

... more about:
»Feinstein »Hillside »WGA »Zucker »disorder »schizophrenia

By then examining the DNA sequence of those genes in a separate group of patients with schizophrenia and healthy individuals, the research team – working in conjunction with PGx Health in New Haven, CT -- observed multiple gene abnormalities in patients with schizophrenia that were not found, or were found much less commonly, in healthy individuals.

“WGA technology allowed us to shine a light across virtually the entire genome, rather than looking at just one gene at a time,” said Todd Lencz, PhD, the first author of the study, and an investigator at Zucker Hillside and The Feinstein Institute. “Using WGA, we found genes that had not been previously considered in studies of schizophrenia.” Dr. Lencz added that “the critical next step is confirming these results in independent datasets.”

Anil Malhotra, MD, also of Zucker Hillside and The Feinstein, and senior investigator of the study, noted: “If these results are confirmed, they could open up new avenues for research in schizophrenia and severe mental illness. A role for cytokines could help explain why prenatal exposure to viruses is a risk factor for schizophrenia, thus providing a bridge between genetic risk and environmental exposures.”

The study was funded by a private donation from the Donald and Barbara Zucker Foundation, an award from the KeySpan Energy, and grants from the National Institute of Mental Health; NARSAD, the Mental Health Research Association (formerly known as National Alliance for Research on Schizophrenia and Depression); and the Stanley Medical Research Institute.

About The Feinstein Institute for Medical Research

Headquartered in Manhasset, NY, and part of the North Shore-LIJ Health System, The Feinstein Institute for Medical Research is among the top six percent of all institutions that receive funding from the National Institutes of Health. Building on its strengths in neurodegenerative and psychiatric disorders, genomics and human genetics, immunology and inflammation, and oncology and cell biology, its goal is to understand the biological processes that underlie various diseases and translate this knowledge into new tools for diagnosis and treatment.

Terry Lynam | EurekAlert!
Further information:
http://www.FeinsteinInstitute.org

Further reports about: Feinstein Hillside WGA Zucker disorder schizophrenia

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>