Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feinstein Researchers Uncover Genetic Risk for Schizophrenia

21.03.2007
Psychiatric researchers at The Zucker Hillside Hospital campus of The Feinstein Institute for Medical Research have uncovered evidence of a new gene that appears to increase the risk of developing schizophrenia, a disorder characterized by distorted thinking, hallucinations and a reduced ability to feel normal emotions.

Working in conjunction with researchers at the Harvard Medical School Partners Center for Genetics and Genomics in Boston, MA, the Zucker Hillside team utilized a cutting-edge technology called whole genome association (WGA) to search the entire human genome in 178 patients with schizophrenia and 144 healthy individuals. WGA technology was used to examine over 500,000 genetic markers in each individual, the largest number of such markers examined to date, and the first published study to utilize WGA technology in a psychiatric illness. Previous studies have been much more limited in scope, often incorporating less than 10 markers.

The study results are scheduled to be published online Tuesday in Molecular Psychiatry, which can be accessed at http://www.nature.com/mp/journal/vaop/ncurrent/index.html.

Of the 500,000 genetic markers, the researchers found that the most significant link with schizophrenia came from a marker located in a chromosomal region called the pseudoautosomal region 1 (PAR1), which is on both the X and Y chromosomes. The marker was located adjacent to two genes, CSF2RA and IL3RA, which previously were thought to play a role in inflammation and autoimmune disorders. Those two genes produce receptors for two cytokines, GM-CSF and interleukin-3. Cytokines are involved in the body’s response to infection, and may play a role in the brain’s response to injury.

... more about:
»Feinstein »Hillside »WGA »Zucker »disorder »schizophrenia

By then examining the DNA sequence of those genes in a separate group of patients with schizophrenia and healthy individuals, the research team – working in conjunction with PGx Health in New Haven, CT -- observed multiple gene abnormalities in patients with schizophrenia that were not found, or were found much less commonly, in healthy individuals.

“WGA technology allowed us to shine a light across virtually the entire genome, rather than looking at just one gene at a time,” said Todd Lencz, PhD, the first author of the study, and an investigator at Zucker Hillside and The Feinstein Institute. “Using WGA, we found genes that had not been previously considered in studies of schizophrenia.” Dr. Lencz added that “the critical next step is confirming these results in independent datasets.”

Anil Malhotra, MD, also of Zucker Hillside and The Feinstein, and senior investigator of the study, noted: “If these results are confirmed, they could open up new avenues for research in schizophrenia and severe mental illness. A role for cytokines could help explain why prenatal exposure to viruses is a risk factor for schizophrenia, thus providing a bridge between genetic risk and environmental exposures.”

The study was funded by a private donation from the Donald and Barbara Zucker Foundation, an award from the KeySpan Energy, and grants from the National Institute of Mental Health; NARSAD, the Mental Health Research Association (formerly known as National Alliance for Research on Schizophrenia and Depression); and the Stanley Medical Research Institute.

About The Feinstein Institute for Medical Research

Headquartered in Manhasset, NY, and part of the North Shore-LIJ Health System, The Feinstein Institute for Medical Research is among the top six percent of all institutions that receive funding from the National Institutes of Health. Building on its strengths in neurodegenerative and psychiatric disorders, genomics and human genetics, immunology and inflammation, and oncology and cell biology, its goal is to understand the biological processes that underlie various diseases and translate this knowledge into new tools for diagnosis and treatment.

Terry Lynam | EurekAlert!
Further information:
http://www.FeinsteinInstitute.org

Further reports about: Feinstein Hillside WGA Zucker disorder schizophrenia

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>