Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein found to shield pancreatic cancer cells from self-destruction

21.03.2007
An overexpressed protein protects human pancreatic cancer cells from being forced to devour themselves, removing one of the body's natural defenses against out-of-control cell growth, researchers at The University of Texas M. D. Anderson Cancer Center report in the March issue of Molecular Cancer Research.

The protein tissue transglutaminase, known by the abbreviation TG2, previously has been found by researchers at M. D. Anderson and elsewhere to be overexpressed in a variety of drug-resistant cancer cells and in cancer that has spread from its original organ (metastasized).

"In general, you rarely see overexpression of TG2 in a normal cell," says Kapil Mehta, Ph.D., professor in the M. D. Anderson Department of Experimental Therapeutics, who began 10 years ago studying TG2 as an inflammatory protein.

Mehta and colleagues in the past year have connected TG2 overexpression to drug-resistant and metastatic breast cancer, pancreatic cancer and melanoma.

... more about:
»Cancer »Mehta »Organelle »TG2 »autophagy »pancreatic

Expression of TG2 is tightly regulated in a healthy cell, Mehta says, and is temporarily increased in response to certain hormones or stress factors. "However, constitutive expression of this protein in a cancer cell helps confer protection from stress-induced cell death," Mehta says. "We are developing TG2 as a pharmaceutical target and are now working with a mouse model to that end."

The mechanisms by which TG2 might promote drug-resistance and metastasis have remained elusive, the researchers note. In this paper, the M. D. Anderson team shows in lab experiments that inhibiting the protein in pancreatic cancer cells leads to a form of programmed cell suicide called autophagy, or self-digestion.

TG2 was inhibited in two separate ways. First, the researchers blocked another protein known to activate TG2. Secondly, they also directly targeted TG2 with a tiny molecule known as small interfering RNA tailored to shut down expression of the protein.

In both cases, the result was a drastic reduction of TG2 expression (up to 94 percent) and telltale signs of autophagy in the cancer cells, which became riddled with cavities called vacuoles.

When autophagy occurs, a double membrane forms around a cell organ, or organelle. This autophagosome then merges with a digestive organelle called a lysosome and everything inside is consumed, leaving the vacuole and a residue of digested material. If enough of this happens, the cell dies.

Gabriel Lopez-Berestein, M.D., professor of experimental therapeutics and study co-author, notes that the research also shows that the self-consuming cell death prevented by TG2 is independent of a prominent molecular pathway also known to regulate autophagy called the mammalian target of rapamycin.

"Targeting TG2, or its activating protein PKC, or both, presents a novel and potentially effective approach to treating patients with pancreatic cancer," Lopez-Berestein said. Research in the mouse model remains in the early stages, the researchers caution.

The researchers also show that the TG2 pathway also is separate from another, better known, form of programmed cell death called apoptosis.

Apoptosis, like autophagy, is a normal biological defense mechanism that systematically destroys defective cells by forcing them to kill themselves. In apoptosis, the cells die via damage to their nucleus and DNA, with other cellular organelles preserved. Autophagy kills by degrading those other organelles while sparing the nucleus.

Mehta's lab reported in a Cancer Research paper last September that TG2 overexpression also activates a protein called nuclear factor-kB known to play a role in regulating cell growth, metastasis and apoptosis. This pathway, Mehta explained, could make TG2 an attractive target for other forms of cancer as well.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

Further reports about: Cancer Mehta Organelle TG2 autophagy pancreatic

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>