Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL Scientists Confirm Genetic Distinction Between Heritable and Sporadic Cases of Autism

21.03.2007
Autism is thought to be the most highly heritable of all neuro-psychiatric disorders. Yet, most cases of this childhood developmental disorder that severely affects social interaction and communication are “sporadic” and come with no family history.

New research, led by Cold Spring Harbor Laboratory (CSHL) scientists Jonathan Sebat, Lakshmi Muthuswamy and Michael Wigler, has found a distinction between heritable and sporadic forms of the disease. These findings may influence future autism research and diagnostic testing.

“We found that many children with autism have spontaneous mutations in their DNA. This occurs more often in the sporadic cases than in either familial cases or in healthy children,” said Sebat. The study, published in the March 16, 2007 edition of Science, reports that at least 10% of children with autism carry an alteration in their DNA that is not found in either parent, a much higher rate than is observed in healthy children. To date, most genetic studies of autism have focused on families with multiple autistic children. “Our findings suggest that sporadic autism is genetically distinct from the type that runs in families, and that we must use different approaches for studying them,” concluded Sebat.

“Sporadic autism is the more common form of the disease, and even the inherited form might derive from a mutation that occurred in a parent or grandparent,” explained Wigler. Using a high-resolution method for analyzing DNA called microarray technology, the researchers found that spontaneous copy number mutations occur primarily in sporadic cases. The study reports that these new mutations were found less frequently in families that have more than one child with autism.

The results strengthen the scientific basis for using microarray technology for diagnostic testing. Methods for detecting spontaneous mutations will provide important information for children with autism and their parents. This information could help to determine the risk of having a second child with autism, and the knowledge of which genes are involved may lead to the development of new therapies.

“This work received the vast bulk of its funding from the Simons Foundation, which generously supported the research when it was little more than an idea and a technique,” Wigler acknowledged. In addition to the Simons Foundation, other supporters of this research included The National Institute of Mental Health, Autism Speaks, Cure Autism Now, and the Southwestern Autism Research and Resource Center.
“This discovery sets a new framework for understanding, diagnosing and potentially treating autism,” said CSHL President Bruce Stillman. CSHL is pursuing a $200 million capital campaign that will include construction of new research facilities dedicated to the study of autism.

The full citation of the paper:

C. Sebat et al., Science, 15 March 2007 (10.1126/science.113569). To access the publication on line go to:
http://www.sciencemag.org/cgi/content/short/1128659

CSHL is a private, non-profit research and education institution dedicated to exploring molecular biology and genetics in order to advance the understanding and ability to diagnose and treat cancers, neurological diseases, and other causes of human suffering.

Alyssa Nightingale | EurekAlert!
Further information:
http://www.cshl.edu
http://www.sciencemag.org/cgi/content/short/1128659

Further reports about: Autism CSHL Mutation Sebat sporadic

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>