Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unlock mystery of embryonic stem cell signaling pathway

21.03.2007
USC researchers discover small molecule that may allow for growth of human stem cells without threat of contamination from mouse feeder cells

A newly discovered small molecule called IQ-1 plays a key role in preventing embryonic stem cells from differentiating into one or more specific cell types, allowing them to instead continue growing and dividing indefinitely, according to research performed by a team of scientists who have recently joined the stem-cell research efforts at the Keck School of Medicine of the University of Southern California. Their findings are being published today in an early online edition of the Proceedings of the National Academy of Sciences.

This discovery takes scientists another step closer to being able to grow embryonic stem cells without the “feeder layer” of mouse fibroblast cells that is essential for maintaining the pluripotency of embryonic stem cells, says the study’s primary investigator, Michael Kahn, Ph.D., who was recently named the first Provost’s Professor of Medicine and Pharmacy at USC. Such a layer is needed because it is currently the only proven method to provide the stem cells with the necessary chemical signals that prompt them to stay undifferentiated and to continue dividing over and over.

Still, growing human embryonic stem cells on a layer of mouse fibroblasts has never made much sense to the scientists forced to do just that. “Stem cells that grow on feeders are contaminated with mouse glycoproteins markers,” Kahn says. “If you use them into humans, you’d potentially have a horrible immune response.”

And so, in order to take any eventual stem cell-based treatments from the laboratory to the clinic, there needs to be a way to keep the cells growing and dividing without the use of mouse fibroblasts. The discovery of IQ-1, says Kahn, is a significant step in that direction.

What IQ-1 does, Kahn explains, is to block one arm of a cell-signaling pathway called the Wnt pathway, while enhancing the signal coming from the other arm of the Wnt pathway. The Wnt pathway is known to have dichotomous effects on stem cells i.e. both proliferative and differentiative. More specifically, IQ-1 blocks the coactivator p300 from interacting with the protein ß-catenin; this prevents the stem cells from being ‘told’ to differentiate into a more specific cell type. At the same time, IQ-1 enhances the interaction between the coactivator CBP and ß-catenin, which signals the cells to keep dividing and to remain as fully potent stem cells. “This way, you can essentially maintain the stem cell’s growth and potency for as long as you want,” Kahn says. The studies of IQ-1 and its effects reported in the newly published PNAS paper were performed at the University of Washington in Seattle by Kahn and his colleagues (along with collaborators from the Asahi Kasei Corporation in Shizuoka, Japan) using mouse embryonic stem cells, but Kahn notes that subsequent pilot studies using human embryonic stem cells, in collaboration with Dr. Qilong Ying at the Center for Stem Cell and Regenerative Medicine at the Keck School of Medicine, have confirmed that IQ-1 plays a similar role in that system as well.

“If we can create a totally chemically defined system for growing human embryonic stem cells without any risk of contamination, it would make life much easier for scientists than it is at the moment,” says Kahn. “And that’s our goal.” "Kahn's study provides us with striking new insights into the molecular regulatory machinery inside embryonic stem cells,” adds Martin Pera, Ph.D., director of the Center for Stem Cell and Regenerative Medicine at the Keck School of Medicine. “His team has identified a chemical that controls a critical switch that enables stem cells to multiply indefinitely in the laboratory. These findings will help lead to the development of new techniques to propagate pure populations of embryonic stem cells on a large scale, an essential prerequisite to the successful development of stem cell based therapies."

Jennifer Chan | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Embryonic Fibroblast IQ-1 Kahn embryonic stem embryonic stem cell pathway

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>