Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unlock mystery of embryonic stem cell signaling pathway

21.03.2007
USC researchers discover small molecule that may allow for growth of human stem cells without threat of contamination from mouse feeder cells

A newly discovered small molecule called IQ-1 plays a key role in preventing embryonic stem cells from differentiating into one or more specific cell types, allowing them to instead continue growing and dividing indefinitely, according to research performed by a team of scientists who have recently joined the stem-cell research efforts at the Keck School of Medicine of the University of Southern California. Their findings are being published today in an early online edition of the Proceedings of the National Academy of Sciences.

This discovery takes scientists another step closer to being able to grow embryonic stem cells without the “feeder layer” of mouse fibroblast cells that is essential for maintaining the pluripotency of embryonic stem cells, says the study’s primary investigator, Michael Kahn, Ph.D., who was recently named the first Provost’s Professor of Medicine and Pharmacy at USC. Such a layer is needed because it is currently the only proven method to provide the stem cells with the necessary chemical signals that prompt them to stay undifferentiated and to continue dividing over and over.

Still, growing human embryonic stem cells on a layer of mouse fibroblasts has never made much sense to the scientists forced to do just that. “Stem cells that grow on feeders are contaminated with mouse glycoproteins markers,” Kahn says. “If you use them into humans, you’d potentially have a horrible immune response.”

And so, in order to take any eventual stem cell-based treatments from the laboratory to the clinic, there needs to be a way to keep the cells growing and dividing without the use of mouse fibroblasts. The discovery of IQ-1, says Kahn, is a significant step in that direction.

What IQ-1 does, Kahn explains, is to block one arm of a cell-signaling pathway called the Wnt pathway, while enhancing the signal coming from the other arm of the Wnt pathway. The Wnt pathway is known to have dichotomous effects on stem cells i.e. both proliferative and differentiative. More specifically, IQ-1 blocks the coactivator p300 from interacting with the protein ß-catenin; this prevents the stem cells from being ‘told’ to differentiate into a more specific cell type. At the same time, IQ-1 enhances the interaction between the coactivator CBP and ß-catenin, which signals the cells to keep dividing and to remain as fully potent stem cells. “This way, you can essentially maintain the stem cell’s growth and potency for as long as you want,” Kahn says. The studies of IQ-1 and its effects reported in the newly published PNAS paper were performed at the University of Washington in Seattle by Kahn and his colleagues (along with collaborators from the Asahi Kasei Corporation in Shizuoka, Japan) using mouse embryonic stem cells, but Kahn notes that subsequent pilot studies using human embryonic stem cells, in collaboration with Dr. Qilong Ying at the Center for Stem Cell and Regenerative Medicine at the Keck School of Medicine, have confirmed that IQ-1 plays a similar role in that system as well.

“If we can create a totally chemically defined system for growing human embryonic stem cells without any risk of contamination, it would make life much easier for scientists than it is at the moment,” says Kahn. “And that’s our goal.” "Kahn's study provides us with striking new insights into the molecular regulatory machinery inside embryonic stem cells,” adds Martin Pera, Ph.D., director of the Center for Stem Cell and Regenerative Medicine at the Keck School of Medicine. “His team has identified a chemical that controls a critical switch that enables stem cells to multiply indefinitely in the laboratory. These findings will help lead to the development of new techniques to propagate pure populations of embryonic stem cells on a large scale, an essential prerequisite to the successful development of stem cell based therapies."

Jennifer Chan | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Embryonic Fibroblast IQ-1 Kahn embryonic stem embryonic stem cell pathway

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>