Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unlock mystery of embryonic stem cell signaling pathway

21.03.2007
USC researchers discover small molecule that may allow for growth of human stem cells without threat of contamination from mouse feeder cells

A newly discovered small molecule called IQ-1 plays a key role in preventing embryonic stem cells from differentiating into one or more specific cell types, allowing them to instead continue growing and dividing indefinitely, according to research performed by a team of scientists who have recently joined the stem-cell research efforts at the Keck School of Medicine of the University of Southern California. Their findings are being published today in an early online edition of the Proceedings of the National Academy of Sciences.

This discovery takes scientists another step closer to being able to grow embryonic stem cells without the “feeder layer” of mouse fibroblast cells that is essential for maintaining the pluripotency of embryonic stem cells, says the study’s primary investigator, Michael Kahn, Ph.D., who was recently named the first Provost’s Professor of Medicine and Pharmacy at USC. Such a layer is needed because it is currently the only proven method to provide the stem cells with the necessary chemical signals that prompt them to stay undifferentiated and to continue dividing over and over.

Still, growing human embryonic stem cells on a layer of mouse fibroblasts has never made much sense to the scientists forced to do just that. “Stem cells that grow on feeders are contaminated with mouse glycoproteins markers,” Kahn says. “If you use them into humans, you’d potentially have a horrible immune response.”

And so, in order to take any eventual stem cell-based treatments from the laboratory to the clinic, there needs to be a way to keep the cells growing and dividing without the use of mouse fibroblasts. The discovery of IQ-1, says Kahn, is a significant step in that direction.

What IQ-1 does, Kahn explains, is to block one arm of a cell-signaling pathway called the Wnt pathway, while enhancing the signal coming from the other arm of the Wnt pathway. The Wnt pathway is known to have dichotomous effects on stem cells i.e. both proliferative and differentiative. More specifically, IQ-1 blocks the coactivator p300 from interacting with the protein ß-catenin; this prevents the stem cells from being ‘told’ to differentiate into a more specific cell type. At the same time, IQ-1 enhances the interaction between the coactivator CBP and ß-catenin, which signals the cells to keep dividing and to remain as fully potent stem cells. “This way, you can essentially maintain the stem cell’s growth and potency for as long as you want,” Kahn says. The studies of IQ-1 and its effects reported in the newly published PNAS paper were performed at the University of Washington in Seattle by Kahn and his colleagues (along with collaborators from the Asahi Kasei Corporation in Shizuoka, Japan) using mouse embryonic stem cells, but Kahn notes that subsequent pilot studies using human embryonic stem cells, in collaboration with Dr. Qilong Ying at the Center for Stem Cell and Regenerative Medicine at the Keck School of Medicine, have confirmed that IQ-1 plays a similar role in that system as well.

“If we can create a totally chemically defined system for growing human embryonic stem cells without any risk of contamination, it would make life much easier for scientists than it is at the moment,” says Kahn. “And that’s our goal.” "Kahn's study provides us with striking new insights into the molecular regulatory machinery inside embryonic stem cells,” adds Martin Pera, Ph.D., director of the Center for Stem Cell and Regenerative Medicine at the Keck School of Medicine. “His team has identified a chemical that controls a critical switch that enables stem cells to multiply indefinitely in the laboratory. These findings will help lead to the development of new techniques to propagate pure populations of embryonic stem cells on a large scale, an essential prerequisite to the successful development of stem cell based therapies."

Jennifer Chan | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Embryonic Fibroblast IQ-1 Kahn embryonic stem embryonic stem cell pathway

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>