Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New synthetic self-assembling macromolecules mimic nature

20.03.2007
We take "self-assembly" for granted when it is carried out by the biopolymers which are our hair, teeth, or skin. But when scientists devise new ways for molecules to self assemble into new materials, it is an important achievement.

Researchers with the Macromolecules and Interfaces Institute (MII www.mii.vt.edu) at Virginia Tech report such a development in the online issue for the Journal of the American Chemical Society, in the article, "Aggregation of Rod-Coil Block Copolymers Containing Rigid Polyampholyte Blocks in Aqueous Solution" (10.1021/ja070422+) and at the 233rd National Meeting of the American Chemical Society (ACS) in Chicago, March 25-29.

S. Richard Turner, MII director and research professor of chemistry at Virginia Tech, and Min Mao, a Ph.D. candidate in polymer chemistry, report the synthesis of a new family of charged, rod-like block copolymers. Only as long as a fraction of the diameter of human hair, the tiny rods can be either positive or negative, or can have alternating positive and negative charges along the backbone. The rods self-assemble and the aggregated structures are remarkable stable in saline solution, Turner said.

"The early results of this study suggest that these charged polymers self-assemble by like-charge interactions similar to such natural polymers as DNA," said Turner. "The stable self-assembled structures could have potential applications in drug delivery and gene delivery systems."

... more about:
»charged »hair »self-assemble

But more immediate, "These unique block copolymers can be instructive models in understanding the forces that lead to the dense packing of DNA when complexed with viruses and other polymers," he said.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

Further reports about: charged hair self-assemble

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>