Dr Brian Saunders from The School of Materials and Professor Tony Freemont from The Faculty of Medical and Human Sciences have developed tiny gel particles that swell and stiffen when injected into a damaged area.
Investigations have revealed that degenerated animal intervertebral discs containing the injected 'microgels' regain their mechanical properties.
This development opens up the possibility of human patients being able to regain full mobility and flexibility after receiving spinal injections.
This would compare favourably with spinal fusion - a major surgical procedure with considerable recovery time for the patient, resulting in a significant loss of mobility at the fused and adjacent discs.
Degeneration of intervertebral discs causes holes in the load-bearing tissue of the disc, decreasing disc height and resulting in pain.
The microgel particles the research team have developed are like 'smart sponges' when dispersed in water.
The material is a fluid at a low pH - in other words, a low level of acidity - and can be injected through a syringe. It changes to a stiff gel at physiological pH values - that is, once it enters the body - due to absorption of water by the particles.
During their investigations, the research team injected the material into a damaged bovine intervertebral disc and increased the pH to biological levels by injecting an alkaline solution.
Professor Freemont, who works in the Division of Regenerative Medicine in the School of Medicine, said: "This research was motivated by the urgent need for a non-surgical method for repairing intervertebral discs.
"Our approach has the advantage of restoring spinal mobility whereas spinal fusion surgery results in a significant loss of mobility at the fused and adjacent discs."
Dr Saunders said: "Although we are encouraged by our findings, much work lies ahead to develop a viable non-surgical repair technology to replace spinal fusion as the standard surgical treatment for chronic lower back pain."
He added that future work will investigate biodegradable microgels that release additives to stimulate regeneration of intervertebral disc tissue.
The research was funded by the Engineering and Physical Sciences Research Council (EPSRC) and The University of Manchester Intellectual Property Ltd (UMIP).
Dr Saunders and Professor Freemont recently reported their findings in the online journal Soft Matter. They now hope to secure extra funding with a view to conducting clinical trials.
Jon Keighren | alfa
Further information:
http://www.umip.com
http://www.rsc.org/publishing/journals/SM/article.asp?doi=b613943d
http://www.manchester.ac.uk.
Further reports about: > Gel > Mobility > intervertebral > spinal
Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo
Full of hot air and proud of it
18.04.2018 | University of Pittsburgh
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.
Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
19.04.2018 | Materials Sciences
Electromagnetic wizardry: Wireless power transfer enhanced by backward signal
19.04.2018 | Physics and Astronomy
Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Physics and Astronomy