Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


No sex for 40 million years? No problem.

A group of organisms that has never had sex in over 40 million years of existence has nevertheless managed to evolve into distinct species, says new research published today. The study challenges the assumption that sex is necessary for organisms to diversify and provides scientists with new insight into why species evolve in the first place.

The research, published in PLoS Biology, focuses on the study of bdelloid rotifers, microscopic aquatic animals that live in watery or occasionally wet habitats including ponds, rivers, soils, and on mosses and lichens. These tiny asexual creatures multiply by producing eggs that are genetic clones of the mother – there are no males. Fossil records and molecular data show that bdelloid rotifers have been around for over 40 million years without sexually reproducing, and yet this new study has shown that they have evolved into distinct species.

Using a combination of DNA sequencing and jaw measurements taken using a scanning electron microscope, the research team examined bdelloid rotifers living in different aquatic environments across the UK, Italy and other parts of the world. They found genetic and jaw-shape evidence that the rotifers had evolved into distinct species by adapting to differences in their environment.

Dr Tim Barraclough from Imperial College London’s Division of Biology explained: “We found evidence that different populations of these creatures have diverged into distinct species, not just because they become isolated in different places, but because of the differing selection pressures in different environments.

... more about:
»Organisms »Sex »bdelloid »creatures »rotifer »sexual

“One remarkable example is of two species living in close proximity on the body of another animal, a water louse. One lives around its legs, the other on its chest, yet they have diverged in body size and jaw shape to occupy these distinct ecological niches. Our results show that, over millions of years, natural selection has caused divergence into distinct entities equivalent to the species found in sexual organisms.”

Previously, many scientists had thought that sexual reproduction was necessary for speciation because of the importance of interbreeding in explaining speciation in sexual organisms. Asexual creatures like the bdelloid rotifers were known not to be all identical, but it had been argued that the differences might arise solely through the chance build-up of random mutations that occur in the ‘cloning’ process when a new rotifer is born. The new study proves that these differences are not random and are the result of so-called ‘divergent selection’, a process well known to cause the origin of species in sexual organisms.

Dr Barraclough adds: “These really are amazing creatures, whose very existence calls into question scientific understanding, because it is generally thought that asexual creatures die out quickly, but these have been around for millions of years.

“Our proof that natural selection has driven their divergence into distinct species is another example of these miniscule creatures surprising scientists – and their ability to survive and adapt to change certainly raises interesting questions about our understanding of evolutionary processes.”

Danielle Reeves | alfa
Further information:

Further reports about: Organisms Sex bdelloid creatures rotifer sexual

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>