Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice created in nanoseconds by Sandia's Z machine

19.03.2007
Not expected at your local 7-Eleven anytime soon

Sandia’s huge Z machine, which generates termperatures hottter than the sun, has turned water to ice in nanoseconds. However, don’t expect anything commercial just yet: the ice is hotter than the boiling point of water.

"The three phases of water as we know them — cold ice, room temperature liquid, and hot vapor — are actually only a small part of water’s repertory of states," says Sandia researcher Daniel Dolan. "Compressing water customarily heats it. But under extreme compression, it is easier for dense water to enter its solid phase [ice] than maintain the more energetic liquid phase [water]."

Sandia is a National Nuclear Security Administration (NNSA) laboratory.

In the Z experiment, the volume of water shrank abruptly and discontinuously, consistent with the formation of almost every known form of ice except the ordinary kind, which expands. (One might wonder why this ice shrank instead of expanding, given the common experience of frozen water expanding to wreck garden hoses left out over winter. The answer is that only "ordinary" ice expands when water freezes. There are at least 11 other known forms of ice occurring at a variety of temperatures and pressures.)

"This work," says Dolan, "is a basic science study that helps us understand materials at extreme conditions."

But it has potential practical value. The work, which appears online March 11 in Nature Physics, was undertaken partly because phase diagrams that predict water’s state at different temperatures and pressures are not always correct — a fact worrisome to experimentalists working at extreme conditions, as well as those having to work at distances where direct measurement is impractical. For example, work reported some months ago at Z demonstrated that astronomers’ ideas about the state of water on the planet Neptune were probably incorrect.

Closer at hand, water in a glass could be cooled below freezing and remain water, in what is called a supercooled state.

Accurate knowledge of water’s behavior is potentially important for Z because the 20-million-ampere electrical pulses the accelerator sends through water compress that liquid. Ordinarily, the water acts as an insulator and as a switch. But because the machine is being refurbished with more modern and thus more powerful equipment, questions about water’s behavior at extreme conditions are of increasing interest to help avoid equipment failure for the machine or its more powerful successors, should those be built.

One unforeseen result of Dolan’s test was that the water froze so rapidly. The freezing process as it is customarily observed requires many seconds at the very least.

The answer, says Dolan, seems to be that very fast compression causes very fast freezing. At Z and also at Sandia’s nearby STAR (Shock Thermodynamic Applied Research) gas gun facility, thin water samples were compressed to pressures of 50,000-120,000 atmospheres in less than 100 nanoseconds. Under such pressures, water appears to transform to ice VII, a phase of water first discovered by Nobel laureate Percy Bridgman in the 1930s. The compressed water appeared to solidify into ice within a few nanoseconds.

Ice VII has nothing to do with ice-nine, an entirely fictional creation of author Kurt Vonnegut in his 1963 novel Cat’s Cradle. There, a few molecules of the invented substance acts as a precipitating seed to cause an extended chemical reaction that freezes almost all of Earth’s water. Ice VII, on the other hand, only stays frozen as long as it is under enormous pressure. The pressure relenting, the ice changes back to ordinary water.

Nucleating agents, of course, are often used to hasten sluggish chemical processes, such as when clouds are "seeded" with silver iodide to induce rain. Dolan already had demonstrated, as a graduate physics student at Washington State University, that water can freeze on nanosecond time scales in the presence of a nucleating agent.

However, the behavior of pure water under high pressure remained a mystery.

Sandia instruments observed the unnucleated water becoming rapidly opaque — a sign of ice formation in which water and ice coexist — as pressure increased. At the 70,000 atmosphere mark and thereafter, the water became clear, a sign that the container now held entirely ice.

"Apparently it’s virtually impossible to keep water from freezing at pressures beyond 70,000 atmospheres," Dolan says.

For these tests, Z created the proper conditions by magnetic compression. Twenty million amperes of electricity passed through a small aluminum chamber, creating a magnetic field that isentropically compressed aluminum plates roughly 5.5 by 2 inches in cross section. This created a shockless but rapidly increasing compression across a 25-micron-deep packet of water.

The multipurpose Z machine, whose main use is to produce data to improve the safety and reliability of the US nuclear deterrent, has compressed spherical capsules of hydrogen isotopes to release neutrons — the prerequisite for controlled nuclear fusion and essentially unlimited energy for humanity.

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov
http://www.sandia.gov/news/resources/releases/2007/z-ice.html

Further reports about: Compression Dolan Machine atmosphere nanosecond pressure

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>