Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ice created in nanoseconds by Sandia's Z machine

Not expected at your local 7-Eleven anytime soon

Sandia’s huge Z machine, which generates termperatures hottter than the sun, has turned water to ice in nanoseconds. However, don’t expect anything commercial just yet: the ice is hotter than the boiling point of water.

"The three phases of water as we know them — cold ice, room temperature liquid, and hot vapor — are actually only a small part of water’s repertory of states," says Sandia researcher Daniel Dolan. "Compressing water customarily heats it. But under extreme compression, it is easier for dense water to enter its solid phase [ice] than maintain the more energetic liquid phase [water]."

Sandia is a National Nuclear Security Administration (NNSA) laboratory.

In the Z experiment, the volume of water shrank abruptly and discontinuously, consistent with the formation of almost every known form of ice except the ordinary kind, which expands. (One might wonder why this ice shrank instead of expanding, given the common experience of frozen water expanding to wreck garden hoses left out over winter. The answer is that only "ordinary" ice expands when water freezes. There are at least 11 other known forms of ice occurring at a variety of temperatures and pressures.)

"This work," says Dolan, "is a basic science study that helps us understand materials at extreme conditions."

But it has potential practical value. The work, which appears online March 11 in Nature Physics, was undertaken partly because phase diagrams that predict water’s state at different temperatures and pressures are not always correct — a fact worrisome to experimentalists working at extreme conditions, as well as those having to work at distances where direct measurement is impractical. For example, work reported some months ago at Z demonstrated that astronomers’ ideas about the state of water on the planet Neptune were probably incorrect.

Closer at hand, water in a glass could be cooled below freezing and remain water, in what is called a supercooled state.

Accurate knowledge of water’s behavior is potentially important for Z because the 20-million-ampere electrical pulses the accelerator sends through water compress that liquid. Ordinarily, the water acts as an insulator and as a switch. But because the machine is being refurbished with more modern and thus more powerful equipment, questions about water’s behavior at extreme conditions are of increasing interest to help avoid equipment failure for the machine or its more powerful successors, should those be built.

One unforeseen result of Dolan’s test was that the water froze so rapidly. The freezing process as it is customarily observed requires many seconds at the very least.

The answer, says Dolan, seems to be that very fast compression causes very fast freezing. At Z and also at Sandia’s nearby STAR (Shock Thermodynamic Applied Research) gas gun facility, thin water samples were compressed to pressures of 50,000-120,000 atmospheres in less than 100 nanoseconds. Under such pressures, water appears to transform to ice VII, a phase of water first discovered by Nobel laureate Percy Bridgman in the 1930s. The compressed water appeared to solidify into ice within a few nanoseconds.

Ice VII has nothing to do with ice-nine, an entirely fictional creation of author Kurt Vonnegut in his 1963 novel Cat’s Cradle. There, a few molecules of the invented substance acts as a precipitating seed to cause an extended chemical reaction that freezes almost all of Earth’s water. Ice VII, on the other hand, only stays frozen as long as it is under enormous pressure. The pressure relenting, the ice changes back to ordinary water.

Nucleating agents, of course, are often used to hasten sluggish chemical processes, such as when clouds are "seeded" with silver iodide to induce rain. Dolan already had demonstrated, as a graduate physics student at Washington State University, that water can freeze on nanosecond time scales in the presence of a nucleating agent.

However, the behavior of pure water under high pressure remained a mystery.

Sandia instruments observed the unnucleated water becoming rapidly opaque — a sign of ice formation in which water and ice coexist — as pressure increased. At the 70,000 atmosphere mark and thereafter, the water became clear, a sign that the container now held entirely ice.

"Apparently it’s virtually impossible to keep water from freezing at pressures beyond 70,000 atmospheres," Dolan says.

For these tests, Z created the proper conditions by magnetic compression. Twenty million amperes of electricity passed through a small aluminum chamber, creating a magnetic field that isentropically compressed aluminum plates roughly 5.5 by 2 inches in cross section. This created a shockless but rapidly increasing compression across a 25-micron-deep packet of water.

The multipurpose Z machine, whose main use is to produce data to improve the safety and reliability of the US nuclear deterrent, has compressed spherical capsules of hydrogen isotopes to release neutrons — the prerequisite for controlled nuclear fusion and essentially unlimited energy for humanity.

Neal Singer | EurekAlert!
Further information:

Further reports about: Compression Dolan Machine atmosphere nanosecond pressure

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>



Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

More VideoLinks >>>