Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use poliovirus to destroy neuroblastoma tumors in mice

19.03.2007
The cause of one notorious childhood disease, poliovirus, could be used to treat the ongoing threat of another childhood disease, neuroblastoma. In the March 15 issue of Cancer Research, researchers from Stony Brook University report that an attenuated -- or non-virulent -- form of poliovirus is effective in obliterating neuroblastoma tumors in mice, even when the mice had been previously vaccinated against the virus.

By its nature, poliovirus destroys the cells it infects in an attempt to replicate copies of itself. When released from the cells it kills, the replicated particles then attack surrounding cells. The Stony Brook researchers took advantage of this viral property by injecting a stable, attenuated strain of poliovirus directly into neuroblastoma tumors transplanted into 12 mice engineered to contract polio. The virus was able to destroy tumors in all 12 mice; however tumors reoccurred in two mice by the end of the 180-day study period.

None of the mice experienced any ill effects from the virus itself. According to the researchers, any viral particles that make it to the bloodstream would be destroyed by antibodies created through poliovirus vaccination. The researchers believe that their findings, if developed to work in humans, could represent a safe, practical means of treating a deadly childhood cancer and possibly many other cancers in adults.

"A tamed poliovirus represents a significant step in finding viral treatments that can kill tumors without harming patients," said Hidemi Toyoda, M.D., Ph.D., a pediatrician and postdoctoral research fellow in Stony Brook's Department of Molecular Genetics and Microbiology. "Effectively, we have harnessed a virus that was deadly in children just a few decades ago, namely polio, and used an essential aspect of its nature to destroy a disease that is deadly today."

... more about:
»Polio »Stony »Toyoda »Viral »neuroblastoma »poliovirus

Surprisingly, the researchers also discovered that the poliovirus treatment effectively protected the mice against new tumor growth, a significant factor when fighting a disease like neuroblastoma, which is known to reoccur following chemotherapy.

Neuroblastoma is the most common form of solid tumor in children. It is a cancer of the sympathetic nervous system, the network of nerves that regulate unconscious body activities such as breathing. The cancer most often occurs as a mass or lump on the adrenal glands, which are located on top of the kidneys.

While chemotherapy and radiation therapy are generally effective for some cases of the disease, the prognosis is poor for children with high-risk neuroblastoma.

"Neuroblastoma can be very difficult to treat and the chemotherapies used can lead to health problems later in life," Toyoda said. "In combination with conventional therapy, a poliovirus treatment could reduce the exposure of a child to chemotherapy or radiation and lower the risk of harmful side effects."

To test the effectiveness of poliovirus against cancer tissue, the researchers first had to develop a safe form of the virus. Toyoda and his colleagues work in the laboratory of Stony Brook professor Eckard Wimmer, Ph.D., who in 2002 synthesized poliovirus from its basic chemical components. Based on the properties of the synthetic poliovirus, Wimmer created the highly attenuated virus used in this study by substituting a single nucleotide, located in a functionally important portion of the viral RNA genome called a "spacer region", with an essential regulatory gene removed from elsewhere in the viral genome.

According to Jeronimo Cello, Ph.D., senior author of the Cancer Research paper and research assistant professor at Stony Brook, this engineering feat is like putting a double failsafe into the virus.

"The engineered poliovirus cannot produce neurovirulent copies of itself if the spacer region remains interrupted," said Cello. "And in the unlikely event that the regulatory gene element is deleted, the virus would not be able to reproduce."

To test the virus' ability to destroy neuroblastoma the researchers constructed a transgenic mouse model that allows growth of neuroblastoma cells and carries the human gene for CD155, which codes for the receptor that allows poliovirus to enter cells. The mice were then vaccinated against poliovirus.

Since most humans are immunized against poliovirus, Toyoda and his colleagues needed to know whether such immunization would interfere with the use of the virus in tumor therapy. By injecting the virus directly into the mouse tumors, the researchers demonstrated that it was possible to reach their target and still avoid interacting with the anti-poliovirus antibodies generated by the vaccine.

Not only did the poliovirus prove effective in destroying the tumors, the treatment with virus also seemed to prevent tumors from recurring. Subsequent transplanted tumors were also destroyed, presumably through an enhancement of anti-tumor immune response, say researchers. Since the poliovirus was gone from the system, however, the researchers are unsure of exactly how that immune response occurred.

"This immunity against neuroblastoma acquired by the animals is still something of a mystery, one that we hope to address in future studies," Toyoda said. "But it is an encouraging sign since neuroblastoma are known to relapse quite frequently."

Greg Lester | EurekAlert!
Further information:
http://www.aacr.org

Further reports about: Polio Stony Toyoda Viral neuroblastoma poliovirus

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>