Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists discover cellular 'SOS' signal in response to UV skin damage

19.03.2007
New research from the University of North Carolina at Chapel Hill School of Medicine has identified two proteins that may help protect against skin cancer.

The study, which appears in the advance online edition of the journal Molecular and Cellular Biology, indicates that two proteins, named Timeless and Tipin, form a complex that regulates the rate at which DNA is replicated after exposure to ultraviolet radiation.

Ultraviolet radiation in sunlight damages the DNA in skin cells. If left unrepaired by the cell, this damage can turn into mutations that lead to cancer. Before cells divide, they must replicate, or copy, their DNA to form new daughter cells. If damage in the DNA is discovered even after the cell has given a "go-ahead" to replicate its DNA, the Timeless/Tipin complex sends a signal throughout the nucleus of the cell to slow the rate of replication. This slowdown may give the cell additional time to repair its DNA and potentially save itself from becoming cancerous or from dying in response to ultraviolet radiation.

"What we discovered here was that the cell can send out an additional SOS and slow DNA replication even after it has begun," said Dr. William Kaufmann, a professor of pathology and laboratory medicine and a member of the UNC Lineberger Comprehensive Cancer Center and Center for Environmental Health and Susceptibility.

"We've known for 25 years that a cell can stop DNA replication from even starting when it detects damage in its own DNA – this gives the DNA repair mechanisms in the cell the time to find and repair the damage," he said.

Using an innovative new technique to visualize the replication of DNA strands exposed to ultraviolet radiation, Kaufmann and his co-authors noted a slowdown in DNA replication when Timeless and Tipin were present in the cell. Building blocks for DNA were labeled with fluorescent molecules so that tracks of newly synthesized DNA could be observed under the microscope and their lengths measured.

Though the study specifically examined only the Timless/Tipin response to ultraviolet radiation, Kaufmann speculates that this response may be relevant to other types of DNA damage as well – including those used as treatments for cancer.

"This protective response may make some cells more resistant to certain types of cancer therapies which work by inducing the cancer cell to die. If the cell, even if it is a cancer cell, is given this additional time to recover from treatment, it may be able to survive it, much to the detriment of the patient." Kaufmann said.

Ultraviolet radiation in sunlight causes at least one million cases of skin cancer in the U.S. annually and greater than fifty thousand cases of melanoma.

Leslie Lang | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: DNA Radiation replication ultraviolet radiation

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>