Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One Wwox isn't enough (to protect against cancer)

19.03.2007
A new study shows that the loss of even one of the two copies of a particular tumor-suppressor gene greatly increases the risk that lung cancer will develop in experimental animals.

The study examined the Wwox gene, a suspected tumor-suppressor gene, and showed that even when mice have one working copy of the gene, they nonetheless develop five times more lung tumors than do mice with both copies of the gene. Tumor-suppressor genes normally keep damaged cells from becoming cancerous.

The findings were published in the Proceedings of the National Academy of Sciences by investigators at the Ohio State University Comprehensive Cancer Center.

“Classic tumor-suppressor genes don't increase cancer risk until cells lose both copies of the gene or when both copies are mutated,” says first author Rami I. Aqeilan, research assistant professor of molecular virology, immunology and medical genetics at Ohio State.

... more about:
»Aqeilan »Wwox »develop »lung cancer

“These findings suggest that losing one copy of Wwox can predispose normal cells to become cancerous. This emphasizes the importance that Wwox may have in initiating the disease.”

Surprisingly, the research also links loss of the gene and a form of bone cancer called chondroid osteosarcoma. The research may offer the first animal model for the study of this human disease.

Osteosarcoma is rare in humans, but it is the most common form of bone tumor and the second highest cause of cancer-related death in children, after leukemia, he says.

“Osteosarcoma forms at an early age due to the rapid growth of the bones and skeleton,” says Aqeilan, who is also a researcher with the Ohio State human cancer genetics program.

“These mice have given us a very interesting clue that loss of both copies of Wwox gene may initiate tumors in the bone.”

This study initially set out to prove that Wwox is a bona fide tumor suppressor gene. The gene is missing or altered in 85 percent of lung cancers, 65 percent of breast cancers, and in a high proportion of cancers of the stomach, colon and prostate and some lymphomas.

Wwox is located on chromosome 16, spanning a region called a fragile site, a place where the chromosome often breaks during environmental stress. Breakage at fragile sites results in the loss of pieces of chromosomes and in chromosomal abnormalities. Both can lead to cancer.

“The location of this gene in a fragile site is important,” Aqeilan says. “Our findings suggest that if an environmental stress, such as tobacco smoke, causes the loss of one copy of the gene, it might predispose a person to lung cancer.”

For this study, Aqeilan and colleagues at Ohio State and the University of Massachusetts Medical School developed strains of mice that were missing one copy of the Wwox gene. The mice were bred to produce animals lacking both Wwox genes and mice having both copies of the gene. Mice with both copies served as controls.

Mice born with no copies of Wwox died by four weeks of age. Thirteen of those animals were studied closely, and four of them (31 percent) showed evidence of early osteosarcoma.

Of 58 animals with only one copy of the gene, 16 percent – or nearly one in six – developed lung cancer compared with only 3 percent of the control mice, a five-fold increase.

The researchers also exposed animals with one copy of the gene to a carcinogen, ethyl nitrosourea, to learn about the kinds of tumors that Wwox might help suppress.

Of 46 animals exposed to the chemical, 80 percent developed tumors vs. just under half of control animals that had both copies of the gene. Most of the animals developed lung cancer or lymphoma. Liver cancer, squamous cell carcinoma and malignant B-cell infiltration into the liver and lungs developed in small numbers.

The researchers are now looking for the loss of Wwox in human osteosarcomas and are generating a mouse model that will allow them to study the ability of the gene to reverse tumor growth after it is restored in adult animals with cancer.

“Wwox-mutant mice are useful in understanding the role of this gene in human cancer, and they provide models for studying the carcinogenecity of compounds, and the development, prevention and treatment of common cancers,” Aqeilan says.

A Kimmel Scholar Award and funding from the National Cancer Institute supported this research.

Other OSU researchers involved in this study were Francesco Trapasso, Stefan Costinean, Dean Marshall, Yuri Pekarsky, John P. Hagan, Nicola Zanesi, Mohamed Kaou and Carlo M. Croce.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Aqeilan Wwox develop lung cancer

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>