Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One Wwox isn't enough (to protect against cancer)

19.03.2007
A new study shows that the loss of even one of the two copies of a particular tumor-suppressor gene greatly increases the risk that lung cancer will develop in experimental animals.

The study examined the Wwox gene, a suspected tumor-suppressor gene, and showed that even when mice have one working copy of the gene, they nonetheless develop five times more lung tumors than do mice with both copies of the gene. Tumor-suppressor genes normally keep damaged cells from becoming cancerous.

The findings were published in the Proceedings of the National Academy of Sciences by investigators at the Ohio State University Comprehensive Cancer Center.

“Classic tumor-suppressor genes don't increase cancer risk until cells lose both copies of the gene or when both copies are mutated,” says first author Rami I. Aqeilan, research assistant professor of molecular virology, immunology and medical genetics at Ohio State.

... more about:
»Aqeilan »Wwox »develop »lung cancer

“These findings suggest that losing one copy of Wwox can predispose normal cells to become cancerous. This emphasizes the importance that Wwox may have in initiating the disease.”

Surprisingly, the research also links loss of the gene and a form of bone cancer called chondroid osteosarcoma. The research may offer the first animal model for the study of this human disease.

Osteosarcoma is rare in humans, but it is the most common form of bone tumor and the second highest cause of cancer-related death in children, after leukemia, he says.

“Osteosarcoma forms at an early age due to the rapid growth of the bones and skeleton,” says Aqeilan, who is also a researcher with the Ohio State human cancer genetics program.

“These mice have given us a very interesting clue that loss of both copies of Wwox gene may initiate tumors in the bone.”

This study initially set out to prove that Wwox is a bona fide tumor suppressor gene. The gene is missing or altered in 85 percent of lung cancers, 65 percent of breast cancers, and in a high proportion of cancers of the stomach, colon and prostate and some lymphomas.

Wwox is located on chromosome 16, spanning a region called a fragile site, a place where the chromosome often breaks during environmental stress. Breakage at fragile sites results in the loss of pieces of chromosomes and in chromosomal abnormalities. Both can lead to cancer.

“The location of this gene in a fragile site is important,” Aqeilan says. “Our findings suggest that if an environmental stress, such as tobacco smoke, causes the loss of one copy of the gene, it might predispose a person to lung cancer.”

For this study, Aqeilan and colleagues at Ohio State and the University of Massachusetts Medical School developed strains of mice that were missing one copy of the Wwox gene. The mice were bred to produce animals lacking both Wwox genes and mice having both copies of the gene. Mice with both copies served as controls.

Mice born with no copies of Wwox died by four weeks of age. Thirteen of those animals were studied closely, and four of them (31 percent) showed evidence of early osteosarcoma.

Of 58 animals with only one copy of the gene, 16 percent – or nearly one in six – developed lung cancer compared with only 3 percent of the control mice, a five-fold increase.

The researchers also exposed animals with one copy of the gene to a carcinogen, ethyl nitrosourea, to learn about the kinds of tumors that Wwox might help suppress.

Of 46 animals exposed to the chemical, 80 percent developed tumors vs. just under half of control animals that had both copies of the gene. Most of the animals developed lung cancer or lymphoma. Liver cancer, squamous cell carcinoma and malignant B-cell infiltration into the liver and lungs developed in small numbers.

The researchers are now looking for the loss of Wwox in human osteosarcomas and are generating a mouse model that will allow them to study the ability of the gene to reverse tumor growth after it is restored in adult animals with cancer.

“Wwox-mutant mice are useful in understanding the role of this gene in human cancer, and they provide models for studying the carcinogenecity of compounds, and the development, prevention and treatment of common cancers,” Aqeilan says.

A Kimmel Scholar Award and funding from the National Cancer Institute supported this research.

Other OSU researchers involved in this study were Francesco Trapasso, Stefan Costinean, Dean Marshall, Yuri Pekarsky, John P. Hagan, Nicola Zanesi, Mohamed Kaou and Carlo M. Croce.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Aqeilan Wwox develop lung cancer

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>